
Attribute-Based Symmetric Searchable
Encryption

Hai-Van Dang1, Amjad Ullah1, Alexandros Bakas2(B), and Antonis Michalas2

1 University of Westminster, London, UK
{H.Dang,A.Ullah}@westminster.ac.uk

2 Tampere University, Tampere, Finland
{alexandros.bakas,antonios.michalas}@tuni.fi

Abstract. Symmetric Searchable Encryption (SSE) is an encryption
technique that allows users to search directly on their outsourced
encrypted data while preserving the privacy of both the files and the
queries. Unfortunately, majority of the SSE schemes allows users to either
decrypt the whole ciphertext or nothing at all. In this paper, we propose a
novel scheme based on traditional symmetric primitives, that allows data
owners to bind parts of their ciphertexts with specific policies. Inspired by
the concept of Attribute-Based Encryption (ABE) in the public setting,
we design a scheme through which users can recover only certain parts of
an encrypted document if and only if they retain a set of attributes that
satisfy a policy. Our construction satisfies the important notion of for-
ward privacy while at the same time supports the multi-client model by
leveraging SGX functionality for the synchronization of users. To prove
the correctness of our approach, we provide a detailed simulation-based
security analysis coupled with an extensive experimental evaluation that
shows the effectiveness of our scheme.

Keywords: Cloud security · Database security · Forward privacy ·
Symmetric searchable encryption

1 Introduction

Symmetric Searchable Encryption (SSE) [15,16,19] is a promising encryption
technique that squarely fits the cloud paradigm and can pave the way for the
development of cloud services that will respect users’ privacy even in the case
of a compromised Cloud Service Provider (CSP). SSE schemes can be seen as a
first, fundamental step for protecting users’ data from both external and internal
attacks (e.g. a malicious administrator). This is due to the fact that in an SSE
scheme, users generate all the secret information (encryption key) locally and
encrypt all of their data on client side (i.e. the encryption key is never revealed to
the CSP). The service offered by the CSP is only used for storing and retrieving

This work was funded by the ASCLEPIOS EU research project (Project No. 826093).

c© Springer Nature Switzerland AG 2020
J. Zhou et al. (Eds.): ACNS 2020 Workshops, LNCS 12418, pp. 318–336, 2020.
https://doi.org/10.1007/978-3-030-61638-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61638-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-61638-0_18

ABE-SSE 319

the generated ciphertexts. In contrast to traditional encryption schemes, SSE
offers a remarkable functionality – it allows users to search for specific keywords
directly through the stored ciphertexts. However fascinating, SSE schemes [16]
“suffer” from several disadvantages with most prominent ones being their effi-
ciency and security. Despite the importance of these issues, in this paper we
mostly focus on a new problem that, to the best of our knowledge, has not be
addressed in the literature. By studying the implementation and application of
SSE in important sectors such as the healthcare industry, we realized that the
traditional problem of encryption that cannot enforce granular access control is
becoming really important. Consider, a patient who has encrypted with an SSE
scheme all of her medical information in a single file. Then, assume she wishes to
give access to her medical data to a dermatologist. The problem that arises here
is that the patient has no way of giving out only the related to a dermatologist
examination information from her medical records (i.e. keep the rest of the infor-
mation private). While this is a well-known limitation of traditional encryption
schemes, in SSE is of paramount importance since such schemes are built for the
cloud – an environment that supports data sharing between multiple users. We
believe that it is time to adopt a new broad vision of cryptosystems that will
take advantage of the cloud features without compromising users’ privacy. To
this end, we explore the concept of granular access control in SSE schemes with
the use of trusted hardware.

Apart from focusing on the aforementioned problem, we also try to enhance
our scheme with the best security guarantees. Leaked information in SSE schemes
has become a problem of paramount importance since it is the main factor in
defining the overall level of security. In works such as [13] and [25] it is pointed
out that even a small leakage can lead to several privacy attacks. These works
were further extended in [33] where the authors assumed that an active adver-
sary can perform file-injection attacks and record the output. This “new” abil-
ity allowed the adversary to recover information about past queries only after
ten file insertions. This result led researchers to design forward private SSE
schemes [7,10,17]. Forward privacy is a notion introduced in [32] and guaran-
tees that that newly added files cannot be related to past search queries. While
forward privacy is a very important property, unfortunately it has been shown
to also be vulnerable to certain file-injection attacks [33]. While forward pri-
vacy secures the contents of a past query, its binary property, backward privacy,
ensures the privacy of future queries. Backward privacy was formalized in [11].
Informally, an SSE scheme is said to be backward private if whenever a (w, id)
is deleted from the database, subsequent search queries for w do not reveal id.
More information on backward privacy can be found in [11]. In our case, our
construction does not support a delete function and as a result, there is no need
to worry about deleted entries.

Our Contributions: The contribution of this paper is manyfold: (1) We intro-
duce the first SSE scheme that provides granular access control and does not fall

320 H.-V. Dang et al.

under the All-or-Nothing category1. Using our scheme, a user can only decrypt
parts of the ciphertexts based on a policy and a list of attributes. (2) Our con-
struction is among the first SSE schemes that preserve the notion of forward
privacy in the multi-client setting – a very challenging problem since we need
to ensure that at any given time, all users are synchronized. (3) Our scheme is
asymptotically optimal. The update cost is O(m) and the search time is O(�),
where m is the number of unique keywords in a file and � is the number of the
resulted files. (4) Our construction is parallelizable. (5) We test the overall per-
formance of the scheme in an experimental test-bed, that realistically imitates
a client-server approach. We built an in-house OpenStack private cloud and a
client that communicates with the cloud over the Internet. Additionally, for the
storage of data we used PostgreSQL – a proper database in contrast to other
similar works, that rely on the use of data structures such as arrays, maps, etc.

2 Background

Notation: Let s be a string. The length of s is denoted by |s|, its prefix of length
� by s(�), and its suffix of length � by s(�), where � ≤ |s|. The i−th position of s is
denoted by s[i]. A function negl(·) is called negligible if ∀c ∈ N,∃n0 ∈ N : ∀n ≥
n0, negl(n) < n−c. A file collection F is denoted by F = {f1, . . . , fn}. The unique
identifier of a file fi ∈ F is denoted by id(fi) and its corresponding ciphertext
is cid(fi). The universe of keywords is denoted by W = {w1, . . . , wm} and the
ciphertext of a keyword wj ∈ W is cwj

. A probabilistic polynomial time (PPT)
adversary ADV is a randomized algorithm for which there exists a polynomial
p(·) such that for all input x, the running time of ADV(x) is bounded by p(|x|).
Finally, a truth table is a mathematical table used to determine if a statement
is true (T) or false (F). In this work, each statement is represented by a binary
string and hence, T = 1 and F = 0. The logical conjunction (∧) of two strings
s1 and s2 outputs 1 (True) iff ∃i : s1[i] = s2[i] = 1. For example (Table 1):

Table 1. Truth table for the conjunction of binary strings

s1 s2 s1 ∧ s2

001 011 1 (T)

010 101 0 (F)

100 010 0 (F)

111 001 1 (T)

Definition 1 (Symmetric Searchable Encryption). A Symmetric Search-
able Encryption scheme consists of the following PPT algorithms:
1 All-or-Nothing refers to the restriction of existing SSE to offer granular access control

on encrypted data (i.e. once you decrypt a file you get access to all of its information).

ABE-SSE 321

– KeyGen(1λ) : A probabilistic algorithm that takes as input a security parameter
λ and outputs a symmetric key K.

– Add(fi) : A user runs this algorithm whenever she wants to upload a new file
fi to the CSP.

– Search(wj) : A user runs this algorithm to search on the encrypted data col-
lection for those files that contain a keyword wj.

Security Definitions: To formalize the leakage of our scheme, we make use
of a leakage function L such that L = (Ladd,Lsearch) where the components
Ladd and Lsearch correspond to the leakage associated with addition and search
operations. The adversary ADV has full control of the client and thus, can trigger
add and search operations at will. ADV issues a polynomial number of queries
and for each query she records the output. The scheme is L−adaptively secure
if there exists a simulator S that, given the leakage function L, can simulate add
and search tokens.

Definition 2 (L−Adaptive Security). Let SSE = (KeyGen,Add,Search) be
a symmetric searchable encryption scheme. Moreover, let L = (Ladd.Lsearch) be
the leakage function of the SSE scheme. We consider the following experiments
between an adversary ADV and a simulator S.
RealADV (1λ)

ADV makes a polynomial time of adaptive queries q = {w, f1} such that f1 has

not been uploaded to the CSP and for each q she receives back either a search
token for w, τs(w) or an add token τα(f1) for f1 and a sequence of ciphertexts
{cw1 , . . . , cwn}, ∀wi ∈ f1. ADV outputs a bit b.

IdealADV,S(1λ)

ADV makes a polynomial time of adaptive queries q = {w, f1} and for
each q, S is given L = (Ladd,Lsearch). S then returns a token and, in the
case of addition, a sequence of ciphertexts ci. ADV outputs a bit b.

We say that the DSSE scheme is L-i secure if for all probabilistic polynomial
adversaries ADV, there exists a probabilistic simulator S such that:

|Pr[(Real) = 1] − Pr[(Ideal) = 1]|≤ negl(λ)

Definition 3 (Search Pattern). The Search Pattern is a vector sp that shows
which query each keyword corresponds to. For example, sp[t] = wj means that
wj was queried at time t.

Definition 4 (Access Pattern). The Access Pattern for a keyword wi is the
set of all files containing wi at a given time t. The set is denoted by Fwi,t.

Definition 5. (Leakage Function L). Let L = (Ladd,Lsearch).

– Ladd = (id(fi),#wi ∈ fi). This function leaks the unique identifier of each
file as well as the number of keywords contained in it.

– Lsearch = (sp[t],Fwi,t). This function leaks the search and access patterns.

322 H.-V. Dang et al.

Definition 6 (Forward Privacy). An SSE scheme is said to be forward pri-
vate, if for all additions Ladd can be written as Ladd = (id(fi),#wi ∈ fi)2.

3 Architecture

In this section, we introduce the system model by describing the entities par-
ticipating in our construction. Figure 1 depicts the high-level architecture of the
system, where the core entities and their interaction can be seen.

Fig. 1. High-level architecture

Access Control: We design an access control mechanism based on a truth
table. In particular, each user has a specific role and each attribute is associated
with a rule. These roles and rules are represented as binary strings and thus, if
the conjunction of these strings outputs 1, then the underlying role can access
the specified attribute. The Roles and Rules tables are defined later in Table 2.

Registration Authority (RA): We assume the existence of a registration
authority RA that generate the SSE key K and share it with registered users3.
Additionally, RA generates Roles – a dictionary that contains mappings between
roles and their access rights (represented in binary). For example, as can be seen
in Table 2a, the access rights for the role of a doctor is 001, or R(Doctor) = 001.
Upon its generation, Roles is sent to the CSP.
Users: We denote by U = {u1, . . . , un} the set of users that have been regis-
tered to a cloud service that supports our scheme. Users are classified into two
categories: data owners and users that have not yet uploaded any encrypted
data to the CSP. The latter category simply queries the CSP for files containing
a specific keyword. The role of the data owner however, is the most important
since it is the one that creates and outsources all the necessary indexes that will
allow the rest of the users to generate consistent search tokens and search over
the stored ciphertexts. A data owner creates the following indexes:
2 More details about forward privacy can be found in [11].
3 RA and its key sharing protocol are out of the scope of this paper.

ABE-SSE 323

1. No.Files[w, att]: Contains a hash of each keyword/attribute pair {w.att}, along
with the number of files that each pair can be found at.

2. No.Search[w, att]: Contains a hash of each keyword/attribute pair {w.att},
along with the number of files that each pair has been queried for.

3. Rules: A dictionary mapping attributes to specific rules (represented in binary
values). As an example, in Table 2b, the rule for the attribute “Disease” is
010, or A(Disease) = 010. A user ui can access an attribute attj bound by a
specific rule, iff (R(ui)) ∧ ((A(attj)) �= 0.

4. Dict: A dictionary containing mappings between hash values of keywords and
file identifiers.

5. EDB: A dictionary containing mappings between file identifiers and encrypted
keywords.

Cloud Service Provider (CSP): We consider a cloud computing environ-
ment similar to the one described in [30]. The CSP storage will consist of two
tables Dict and EDB. Dict contains a mapping between keywords and file iden-
tifiers while EDB contains the inverse mapping (i.e between file identifiers and
keywords). Additionally, the CSP stores the Roles and Rules tables, that enable
access control on each search query. The CSP verifies each query of the users to
make sure that the user is authorised and has access to the TA.
Trusted Authority (TA): TA is an index storage that stores the
No.Files[w, att] and No.Search[w, att] values for a keyword w. These values are
needed to create the search tokens that will allow users to search directly on the
encrypted data. The TA must run inside the trusted execution enviornment in
order to guarantee the integrity and confidentiality of its security-sensitive com-
putation. Intel SGX provides such a protected execution environment. Hence,
the proposed SSE scheme expects, the TA must support SGX. The TA must
remotely attest itself to the Client application and to the CSP service, prior
to its use, to prove that it runs in a trusted execution enviornment. A detailed
description on SGX functionalities can be found in [18].
Structured Data: It is worth noting that the proposed scheme works only
with structured data. In particular, we require all files to be presented as lists
of attribute/keyword pairs (e.g. “Age = 42”, “Surname = Adams”, etc). This
requirement makes our construction suitable for practical use-cases that nor-
mally rely on structured data (e.g. healthcare records).

4 Our Construction

This section constitutes the core contribution of our paper as we present a
detailed description of the construction. We assume the existence of an IND-
CPA secure symmetric key cryptosystem SKE = (Gen,Enc,Dec) and that of a
cryptographic hash function h : {0, 1}∗ → {0, 1}λ. It is important to mention
here that for most SSE schemes, retrieving the actual files from the CSP is con-
sidered to be a trivial process and as such is not taken into consideration. In our
construction, this is essential as the user does not retrieve the entire files but

324 H.-V. Dang et al.

encrypted parts of it. Before we proceed with the formal construction we provide
a high-level description in the form of a toy example, with three files, f1, f2 and
f3. Each file contains structured data with multiple keyword/attribute pairs.

Toy Example: We assume a scenario with three different roles, Doctor, Nurse
and Researcher and three files (f1, f2, f3) as shown in Table 2 . The Role table
maps each role to a binary value; whereas, the Rule table maps each attribute
to a specific rule which is also presented in binary format. An attribute attj
is accessible to a user ui iff R(ui) ∧ A(attj) �= 0. For instance, if ui is a nurse
and attj = surname, then R(nurse) ∧ A(surname) = 010 ∧ 011 = 010 �= 0.
Hence, a nurse can access surnames. Similarly, a nurse can access disease, but
not age since R(nurse) ∧ A(age) = 010 ∧ 101 = 0. We now assume that a nurse
ui wishes to search for the keyword w1 that refers to surname. After ui requests
the No.Files[w1, surname] and No.Search[w1, surname] values from the TA, she
can create the search token τs(w1) that will be sent to the CSP. Upon reception,
the CSP verifies that ui, as a nurse, is allowed to access surname and disease.
As a next step, the CSP locates the files fi such that w1 ∈ fi (in this case, f1).
Finally, based on fi, the CSP retrieves EDB, and sends back to ui the ciphertexts
cw1 and cw3 (since cw2 corresponds to an attribute that ui is unauthorized to
access, it will not be sent back to her).

Table 2. CSP tables

Role Value

Doctor 001

Nurse 010

Researcher 100

(a) Roles

Attr Rule

Surname 011

Age 101

Disease 010

(b) Rules

Kw File

h(w4) f2

h(w5) f2

h(w6) f2

h(w3) f1

h(w2) f1

h(w1) f1

h(w8) f3

h(w7) f3

h(w9) f3

(c) Dict.

File Attr Ciphertext

f1 Surname cw1

f1 Age cw2

f1 Disease cw3

f2 Surname cw4

f2 Age cw5

f2 Disease cw6

f3 Surname cw7

f3 Age cw8

f3 Disease cw9

(d) EDB

4.1 Formal Construction

Key Generation. RA runs the KeyGen algorithm to generate the secret key
K = (K1,K2) where K1,K2 ← SKE.Gen. K will be shared with all users upon their
registration to the service, whereas K1 is used to encrypt/decrypt data (line 9
of Algorithm 1) and K2 will be sent to TA to generate a proof for search query
verification (lines 11–14 of Algorithm 2).

ABE-SSE 325

File Addition. To add a new file fi, a user ui first extracts all the keywords and
attributes from fi. For each pair of (attribute, keyword), requests the No.Files
and No.Search values from the TA. These will allow ui to compute the unique
keyword key Kw and the address addrw (hash value of the keyword as in lines 5–
6 of Algorithm 1). Next, ui encrypts the keywords locally and sends them to
the CSP who stores them in the EDB dictionary. Additionally, ui sends a list
Map = {addrw, id(fi)} to the CSP that will be inserted in Dict. Finally, an
acknowledgement is sent to the TA to update the No.Files and No.Search indexes
accordingly.

Algorithm 1. File Addition
1: Map = {}
2: Cw = {}, Attw = {}
3: for all wj ∈ fi do
4: No.Files[wj , attj] + +
5: Kwj = SKE.Enc(K2, h(wj)||attj ||No.Search[wj, attj])
6: addrwj = h(Kwj ,No.Files[wj , attj]||0)
7: valwj = id(fi)
8: Map = Map ∪ {addrwj , id(fi)}
9: cwj = SKE.Enc(K1, wj)

10: Cw = Cw ∪ cwj , Attw = Attw ∪ attj

11: Send {No.Files[wj , attj]} values to be updated at TA
12: Send (Map, id(fi), {Cw}, {Attw}) to the CSP
13: CSP adds Map into Dict and id(fi), {Cw}, {Attw} to EDB

Search. Assume a user uk wishes to perform a search operation for a given
keyword/attribute pair (e.g. age = 42). To do so, she first contacts the TA to
request No.Files[wj , attj] and No.Search[wj , attj] values, where attj and wj is the
keyword/attribute pair she wishes to search for. Based on No.Search[wj , attj],
uk can compute the unique keyword key Kwj . Additionally, uk also computes
the updated addresses for Dict by incrementing the value of No.Search[wj , attj]
by one (lines 3–8 of Algorithm 2). Finally, uk computes and sends to the
CSP the search token that consists of the keyword key Kwj , No.Files[wj , attj]
and the updated addresses. Upon reception, the CSP forwards Kwj to the TA
who decrypts it using K2 and calculates the updated addresses. The updated
addresses will be sent back to the CSP who can verify their correctness4. Then
the CSP locates all the Dict entries (file identifiers id(fi)), associated with wj .
Based on the list of id(fi) and uk ’s role, the CSP retrieves all encrypted key-
words (cw) associated with each fi that uk is eligible to access. The result is
finally sent to uk in a result list R.

4 At a first glance, this extra round of communication between the CSP and the
TA seems unnecessary. However, it is essential for preventing an attack in which a
malicious user would send to the CSP a list of wrong addresses.

326 H.-V. Dang et al.

Algorithm 2. Search
User uk:

1: Request No.Files[wj , attj] and No.Search[wj , attj] values from TA
2: Kwj = SKE.Enc(K2, h(wj)||attj ||No.Search[wj, attj])
3: No.Search[wj , attj] + +
4: Kwj

′ = SKE.Enc(K2, h(wj)||attj ||No.Search[wj, attj])
5: Lu = {}
6: for i = 1 to No.Files[wj , attj] do
7: addrwi = h(Kwi

′, i||0)
8: Lu = �Lu ∪ {addrwi}
9: Send τs(wj) = (Kwj ,No.Files[wj , attj], Lu, attj) to CSP.

CSP:
10: Forward Kwj to TA

TA:
11: Decrypt Kwj , and repeat steps 3-8 with locally stored values of No.Files,No.Search

to produce a list LTA = {addrwi}
CSP:

12: Send LTA to the CSP
13: if Lu �= LTA then
14: Output ⊥
15: else
16: Fwj = {}
17: for i = 1 to No.Files[wi, atti] do
18: id(fi) = Dict[h(Kwj , i||0)]
19: Fwj = Fwj ∪ {id(fi)}
20: Remove Dict[h(Kwj , i||0)]

21: Add the new addresses as specified in Lu

22: R = {}
23: for all id(fi) ∈ Fwj do
24: for all cw� ∈ fi do
25: if R(uk) ∧ A(att�) �= 0 then
26: R = R ∪ {att�, cwl}
27: Send R to uk

28: Send acknowledgement to TA to update No.Search

5 Security Analysis

In this section, we prove the security of our construction according to Defini-
tion 2. We will prove that we can construct a simulator S that can simulate
addition and search tokens in a way that no PPT adversary ADV will be able
to distinguish between the real and ideal experiments as they were defined in
Sect. 2. Note that, similarly to all SSE schemes, our goal is to prove that addition
and search tokens can be simulated given only the leakage function L.

Theorem 1. Let SKE = (Gen,Enc,Dec) be a CPA-secure symmetric key cryp-
tosystem. Moreover, let h : {0, 1}∗ → {0, 1}λ be a secure cryptographic hash
function. Then our construction is secure according to Definition 2.

ABE-SSE 327

Proof. To prove the security of our construction, we use a hybrid argument where
the simulator S is given as input the leakage function L = (Ladd,Lsearch) and
simulates the SSE functionalities. In a pre-processing phase S generates a key
KEXP ← SKE.Gen(1λ) that is given to ADV. Moreover, S creates a dictionary
KeyStore to store the last Kw of each keyword and one dictionary FOracle to
reply to random oracle queries.
Hybrid 0: Everything runs as specified in the protocol.
Hybrid 1: Like Hybrid 0 but instead of the addition algorithm, S is given Ladd

and proceeds as shown in Algorithm 3.

Algorithm 3. Add Token Simulation
1: L = {}
2: C = {}
3: for i = 1 to i = #wi ∈ f do
4: Simulate addresses ai such that |ai|= λ
5: Add (id(f), ai) in Dict
6: L = L ∪ {ai}
7: cwi ← SKE.Enc(KEXP, 0λ)
8: C = C ∪ cwi

9: τα(f) = (cid(f), C, L)

In particular, S simulates random strings of the correct length as the
addresses and stores them in a list L. Apart from that, S encrypts sequences
of zeros and stores them in a list C. Since the simulated addresses have the
same length as the real ones, ADV cannot distinguish between the list L and
Map from Algorithm 1. Moreover, the CPA-security of SKE ensures us that ADV
cannot distinguish between the encryption of zeros and that of real data. Hence,
Hybrid 1 is indistinguishable from Hybrid 0. As a result,

Pr[(Hybrid 0) = 1] − Pr[(Hybrid 1) = 1]|≤ negl(λ) (1)

Note that since S successfully simulates τα(f) given only Ladd, our scheme
preserves the notion of forward privacy.

Hybrid 2: Like Hybrid 1 but now S is given Lsearch and proceeds as presented in
Algorithm 4. More Specifically, the KeyStore[w] dictionary is used to keep track
of the last key Kw used for each keyword w. The FOracle[Kw][j][i] dictionary
is used to reply to ADV’s queries. For example, FOracle[Kw][0][i] represents the
address of a Dict entry assigned to the i − th file in the collection. Similarly,
FOracle[Kw][1][i] represents id(f). The simulated search token has exactly the
same size and format as the real one, and as a result no PPT adversary can
distinguish between them. Moreover, ADV cannot tamper with the quotes gen-
erated by the enclaves during the execution of the remote attestation protocols.
The reason for this, is that these quotes are signed with secret key provided by
Intel. As a result, tampering with the quotes implies producing a valid signature

328 H.-V. Dang et al.

without owning the corresponding key, which can only happen with negligible
probability. Thus, Hybrid 2 is indistinguishable from Hybrid 1. Hence:

Pr[(Hybrid 1) = 1] − Pr[(Hybrid 2) = 1]|≤ negl(λ) (2)

By combining Eqs. 1 and 2 we get:

Pr[(Hybrid 0) = 1] − Pr[(Hybrid 2) = 1]|≤ negl(λ) (3)

Which implies:

Pr[(Real) = 1] − Pr[(Ideal) = 1]|≤ negl(λ)�� (4)

Side-Channel Attacks. Recent works have shown that SGX is vulnerable to
software attacks. However, according to [18] leakage can be avoided if the pro-
grams running in the enclaves do not have memory access patterns or control
flow branches that depend on the values of sensitive data. In our case, no sen-
sitive computations occur in the SGX enclave and thus, there is no possibility
of leaking encryption keys. Hence, by assuming a constant time implementation
our construction is secure against timing attacks.

Does the Removal of TEE Affects the Security of the Scheme? While
the use of a TEE can be seen as a subterfuge to improve the security of a
scheme this is not true in our case. In contrast to other SGX-based approaches [2,
24], where the SGX enclave hosts sensitive information such as encryption and
decryption keys and hence, removing the SGX would lead to a downgrade in the
security of the schemes, in our case the only information stored in the Enclaves
are metadata (No.Search and No.Files) about the files. It is clear that in our
approach the use of SGX only facilitates the multi-client model and thus, while
removing the TEE does not affect the security of the scheme, it results to a
single-client model.

6 Experimental Results

This section provides an overview of the experimental setup used for the eval-
uation and reports the obtained computational results. As already stated, our
construction works with structured data of a certain form. To this end, and for
reasons of simplicity, all of our experiments are conducted with json files.

Experimental Setup.We have setup an experimental testbed, that realistically
imitates the system model described in Sect. 3. For this purpose, an in-house
OpenStack based private cloud environment has been utilized. Three different
virtual machines (VMs) are created, where each VM is used to run service for one
of the three entities (i.e. Client, TA and CSP) respectively. The resource config-
urations of all the three VMs are identical and as follows: [4 virtual CPUs, 8 GB
RAM, 80 GB disk, Ubuntu 18.04 LTS as operating system].

ABE-SSE 329

Algorithm 4. Search Token Simulation
1: d : Number of file identifiers to be returned
2: R = {}
3: if KeyStore[w] = Null then
4: KeyStore[w] ← {0, 1}λ

5: for i = 1 to i = d do
6: if FOracle[0][i] = Null then
7: Pick a id(f), ai) pair
8: else
9: ai = FOracle[Kw][0][i]

10: Remove ai from the dictionary
11: R = R ∪ {id(f)}
12: UpdatedV al = {}
13: Kw

′ ← {0, 1}λ

14: KeyStore[w] = Kw
′

15: for i = 1 to i = d do
16: Generate a new ai such that |ai|= λ
17: Add id(f), ai) to the dictionary
18: UpdatedV al = UpdatedV al ∪ {id(f), ai}
19: FOracle[Kw][0][i] = ai

20: FOracle[Kw][1][i] = id(f)

21: τs(w) = (Kw, d, UpdatedV al)

The implementation of all three applications was done in Python with the use
of Django framework and Tastypie API. For data storage on the TA and the CSP,
we used a PostgreSQL database; therefore, these components also rely on Psy-
copg PostgreSQL database adapter. The Client is a web application that provides
an interface to end-users for uploading and searching data by utilising the TA
and the CSP. Since the client encrypts/decrypts data locally, its implementation
heavily relies on JavaScript. For this purpose, the Stanford JavaScript Crypto
Library (SJCL) [31], has been utilized for hashing and encryption. SHA256 has
been used for hashing, while the encryption is performed using AES with key
size of 128 bits and CCM mode (Counter with CBC-MAC mode of operation,
which provides both authentication and confidentiality).

Similar to the Client, the TA also requires hashing, encryption and decryption
functions, however different to the Client, it is implemented on the server side.
For this purpose, the python package sjcl 0.2.12 of the same library [8] has been
used. This package allows the TA to encrypt/decrypt messages compatible with
the message format of the SJCL library used by the client.

Each application is wrapped in containers and then deployed on the respec-
tive VMs. This was mainly done to easily setup and reproduce the experiments.
The hosting of each application is handled through the Gunicorn WSGI http
server. In the case of CSP and TA, the corresponding PostgreSQL database
instances ran in separate containers on same VMs (i.e. on each VM, there are
two containers – the service and the database container).

330 H.-V. Dang et al.

Open Science and Reproducible Research: To support open science and
reproducible research and give the opportunity to use, test and extend our
scheme, we release all code on GitLab [5] and research artifacts on Zenodo [4].
Additionally, we dockerize the implementation and publish the images on Docker
Hub [3].

Datasets.To evaluate the computational complexity of the various functions
of our scheme, synthetic structural data of different size were generated. As a
benchmark, we considered a system consisting of data belonging to 300 indi-
viduals, where each individual data is provided through a json file. Hence, the
data of 300 individuals means 300 json files, where every json file contains a
fixed number of attributes and their values. The value of each attribute is also
synthetically generated and consists of randomly selected number of characters,
(i.e. between 5 to 30). Using these settings, we then considered sub-scenarios,
where the number of files remains fixed (i.e 300), but, the number of attributes
varies from 50 to 400. Our datasets can be seen in Table 3.
Choosing the Parameters for the Experiments: We used json files, as
inputs, due to its simplistic nature and wide adoption. To choose appropriate
parameters for the experiments (300 instances with attributes varying from 50
to 400), we relied on popular medical datasets, such as Breast Cancer Wiscon-
sin (Diagnostic) (569 instances, 32 attributes) and Heart Disease Data Set (303
instances, 75 attributes), from the UC Irvine Machine Learning Repository [1].
The aim of experiments was to evaluate the performance of the scheme. Hence,
the actual contents of the data was not important. Therefore, the data were
synthetically generated to avoid any data compatibility and/or transformation
issues. To get more accurate results, each experiment was run 30 times.

Table 3. Datasets

No of attributes Size in database

50 4.82 MB

100 9.6 MB

150 14 MB

200 19 MB

250 23 MB

300 28 MB

350 33 MB

400 37 MB

Computational Time and Overhead. We have used Apache Jmeter, a load
testing tool, combined with Selenium WebDriver, a web automation testing
framework, and Chrome driver, to automate and measure the execution of web

ABE-SSE 331

application in Chrome version 78.0.3904.108. The performance tests were con-
ducted on a computer with 8GB RAM, Intel Core i5-6500 CPU 3.20GHz 4
cores, 250GB disk size and Ubuntu 16.04 LTS 64-bit operating system. The
reported measurements are the average result of 30 simulation runs.

Search: To measure the performance of Search we focused on (1) Evaluating
the impact of the number of attributes per file to the search time. Our mea-
surements included files with a variable number of attributes ranging from 50
to 400 and (2) Evaluating the impact of the size of result list R (as defined in
Algorithm 2) to the search processing time for files containing different number
of attributes (ranging from 50 to 400). Figures 2a and 2b present the aggregated
results. From Fig. 2a, we conclude that the processing time increases as the
number of matching keywords in a search query increases. For example, for files
containing 50 attributes, the completion time for a search query that returned 0
matches was approximately 4 s, whereas nearly 7 seconds were required when 20
matches were found. A similar pattern was observed in all the remaining sce-
narios (i.e. when the number of attributes increases from 100 to 400 per file).
Figure 2b, illustrates the impact of the result list R to the processing time. We
observe that the processing time grows almost linearly with the size of R. Note
that the times presented in Figs. 2a and 2b, include the generation of the search
token, the communication between the CSP and TA, the time required for the
CSP to find all matching files and finally, the decryption of the matching files.

Fig. 2. Search function processing time for (a) Variable data sizes against number of
found occurrences, (b) Number of found occurrences against variable data sizes

Insert: In this part of the experiments, we measured the time required to insert
new data in a non-empty database. For the purpose of our experiments, we first
ran our tests with a database containing 50 files and then increased the number
of files to 300. In each case, different measurements were recorded based on
the number of attributes (ranging from 50 to 400). Figures 3a and 3b present
the obtained results. Each measurement, in both plots, represents the average
processing time of 30 runs, where the line bar represents the minimum and
maximum measurement amongst those runs. The key points from the above-
mentioned results is that the measurements in both cases are almost identical.
However, as the number of attributes per file increases, the processing time
increases significantly.

332 H.-V. Dang et al.

Fig. 3. Processing time of new file insertion whilst (a) 300 files present in database,
(b) 50 files present in database

Data Storage Overhead: In the last phase of our experiments, we measured
the data storage overhead. We recorded the size of the databases for the CSP
and the TA. When final measurements were taken, the databases contained data
of 300 files with different number of attributes (ranging from 50 to 400). Figure 4
presents the summarized results where data(blue line) refers to the ciphertexts
stored in the CSP, the overhead of CSP is the size of the dictionary stored in
the CSP, the overhead of the TA is the size of metadata stored in the TA and
the total overhead is the sum of the two.

Fig. 4. Data table sizes containing data of 300 files

7 Related Work and Comparison

Recently, there have been multiple systems that suggest moving beyond the tra-
ditional boundaries of encryption and allowing users of a cloud service to search
over encrypted data [6,28,29]. Our construction is based on the scheme presented
in [17] where authors designed a single-client forward private SSE scheme that
achieves optimal search and update costs. Another single-client forward private
SSE scheme is proposed in [10], where authors designed Sophos. Even though
Sophos achieves optimal search (O(�)) and update costs (O(m)), a file addition
requires O(m) asymmetric operations on the user’s side. In [12], authors leverage
the functionality offered by Intel’s SGX to minimize the leakage. Their construc-
tion achieves logarithmic search costs. However, it is static and does not support

ABE-SSE 333

file insertions after the initial creation of the indexes. Despite their strong points,
all the aforementioned schemes provide an ”All-or-Nothing” functionality in the
sense that the decryptor will either decrypt the whole ciphertext and get access
to all the information that is enclosed or will not get access at all. SSE schemes
can also be constructed by Oblivious RAM [22] as for example in [20]. However,
as mentioned in [10], such constructions induce large bandwidth overhead, large
client storage and multiple roundtrips and as a result, the use of ORAM-based
approaches seems unrealistic. However, despite these inefficiencies, ORAM-based
techniques can be leveraged to design even more secure SSE schemes as in the
case of [11] where there authors presented, among others, Moneta. Moneta is an
SSE scheme based on the TWORAM construction presented in [20] and satisfies
both forward and backward privacy [11]. However, as argued in [21], the use of
TWORAM renders Moneta impractical for realistic scenarios and the scheme can
serve mostly as a theoretical result for the feasibility of more secure SSE schemes.
More recently, in [21] authors present Orion, another ORAM-based SSE scheme
with similar security guarantees as Moneta. While Orion outperforms Moneta,
the number of interactions between the user and the CSP depends on the size of
the encrypted database. In [2], authors propose an SGX-assisted ORAM-based
construction called Bunker-B. While this approach achieves both forward and
backward privacy with optimal search and update costs, it does not offer any
kind of access control. Finally, in [14], authors present three more forward and
backward private schemes that offer small client storage. However, their schemes
require multiple rounds of interaction, does not offer access control and only
support the single-client model. The idea of enabling access control in keyword
search is not novel. However, existing approaches [23,26,27] are based on Pub-
lic key Encryption with Keyword Search (PEKS), a notion first introduced and
formalized in [9], and thus, are not efficient when dealing with large amounts of
data. Moreover, in [24], authors propose an access control mechanism based on
the use of SGX alongside oblivious data structures such as Circuit-ORAM and
Path-ORAM. However, their scheme requires the client to share a key with the
SGX enclave that will be used to perform sensitive operations such as encryp-
tions and decryptions. However, as mentioned in Sect. 5, performing sensitive
operations inside an SGX enclave, can lead to the leakage of the encryption key.
Given the inadequacy of current searchable encryption schemes to offer granular
access on encrypted data, we propose a construction that enables data owners
to specify exactly which parts of their encrypted data may be decrypted and by
whom. As can be seen in Table 4, our construction not only clearly outperforms
ORAM-based approaches but also improves the search time by a factor of 1/p
in comparison to asymptotical optimal constructions. This is due to the fact
that our construction is parallelizable. In particular, each search operation in
our scheme is reduced to the problem of locating to O(�) independent hashes on
Dict, where � is the result size and p the numbers of the processors. Hence, if
the load is distributed to p processors, we achieve optimal search cost O(�/p).
Similarly, the update cost is O(m/p), where m is the number of keywords. Most

334 H.-V. Dang et al.

importantly, our construction is the only one that supports forward privacy in
the multi-client model, and the only one providing an access control mechanism.

Table 4. N : number of (w, id) pairs, n: total number of files, m: total number of keywords, p:
number of processors, k: number of keys, aw: number of updates matching w, MC: Multi-Client, FP:
Forward Privacy, BP: Backward Privacy.

Comparison

Scheme MC FP BP Search time Update time Client storage Access control

Etemad et al. [17] ✗ ✓ ✗ O(�/p) O(m/p) O(m + n) ✗

HardIDX ✗ ✗ ✗ O(log k) – None ✗

Sophos ✗ ✓ ✗ O(�) O(m) O(m) ✗

Moneta ✗ ✓ ✓ ˜O(aw log N + log3 N) ˜O(log2 N) O(1) ✗

Orion ✗ ✓ ✓ O(� log N2) O(logN2) O(1) ✗

Bunker-B ✗ ✓ ✓ O(�) O(1)a O(m log n) ✗

Ours ✓ ✓ ✗ O(�/p) O(m/p) None ✓
aThe authors only consider deleting a single (w, id) pair.

8 Conclusion

In this paper we proposed the first dynamic SSE scheme that provides granular
access control on encrypted data and does not fall under the All-or-Nothing cat-
egory. Our construction, works with structured data in the form of (Attribute:
Value) and allows users to encrypt their data and provide a policy defining who
can access each part of the encrypted data. Our scheme preserves essential prop-
erties of traditional SSE schemes such as forward privacy and constant rounds of
interactions. We see this work as a first step towards an Attribute-Based Sym-
metric Searchable Encryption scheme and we hope that it will inspire researchers
to further explore and develop this fascinating and promising field.

References

1. Uc irvine machine learning repository. https://archive.ics.uci.edu/ml/index.php,
Accessed 25 Feb 2020

2. Amjad, G., Kamara, S., Moataz, T.: Forward and backward private searchable
encryption with SGX. In: Proceedings of the 12th European Workshop on Systems
Security, pp. 1–6 (2019)

3. Asclepios: Docker images of symmetric searchable encryption (2020). https://
hub.docker.com/r/uowcpc/asclepios-client, https://hub.docker.com/r/uowcpc/
asclepios-server, https://hub.docker.com/r/uowcpc/asclepios-ta

4. Asclepios: Research artifacts of symmetric searchable encryption (2020). https://
zenodo.org/record/3986839#.Xzj7tJNKiqA

5. Asclepios: Symmetric searchable encryption source code (2020) https://gitlab.
com/asclepios-project/sseta, https://gitlab.com/asclepios-project/symmetric-
searchable-encryption-server, https://gitlab.com/asclepios-project/sseclient,
https://gitlab.com/asclepios-project/ssemanual

https://archive.ics.uci.edu/ml/index.php
https://hub.docker.com/r/uowcpc/asclepios-client
https://hub.docker.com/r/uowcpc/asclepios-client
https://hub.docker.com/r/uowcpc/asclepios-server
https://hub.docker.com/r/uowcpc/asclepios-server
https://hub.docker.com/r/uowcpc/asclepios-ta
https://zenodo.org/record/3986839#.Xzj7tJNKiqA
https://zenodo.org/record/3986839#.Xzj7tJNKiqA
https://gitlab.com/asclepios-project/sseta
https://gitlab.com/asclepios-project/sseta
https://gitlab.com/asclepios-project/symmetric-searchable-encryption-server
https://gitlab.com/asclepios-project/symmetric-searchable-encryption-server
https://gitlab.com/asclepios-project/sseclient
https://gitlab.com/asclepios-project/ssemanual

ABE-SSE 335

6. Bakas, A., Michalas, A.: Modern Family: a revocable hybrid encryption scheme
based on attribute-based encryption, symmetric searchable encryption and SGX.
In: Chen, S., Choo, K.-K.R., Fu, X., Lou, W., Mohaisen, A. (eds.) SecureComm
2019. LNICST, vol. 305, pp. 472–486. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-37231-6 28

7. Bakas, A., Michalas, A.: Multi-client symmetric searchable encryption with forward
privacy. Cryptology ePrint Archive, Report 2019/813 (2019). https://eprint.iacr.
org/2019/813

8. Bartel, U.: Python-SJCL (2020). https://pypi.org/project/sjcl/
9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption

with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

10. Bost, R.:
∑

oϕoς: Forward secure searchable encryption. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016 (2016)

11. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security (2017)

12. Brasser, F., Hahn, F., Kerschbaum, F., Sadeghi, A.R., Fuhry, B., Bahmani, R.:
Hardidx: Practical and secure index with SGX (2017)

13. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM (2015)

14. Demertzis, I., Ghareh Chamani, J., Papadopoulos, D., Papamanthou, C.: Dynamic
searchable encryption with small client storage. In: NDSS, 2020 (2020)

15. Dowsley, R., Michalas, A., Nagel, M.: A report on design and implementation of
protected searchable data in iaas. Technical report, Swedish Institute of Computer
Science (SICS) (2016)

16. Dowsley, R., Michalas, A., Nagel, M., Paladi, N.: A survey on design and imple-
mentation of protected searchable data in the cloud. Computer Science Review
(2017). http://www.sciencedirect.com/science/article/pii/S1574013716302167

17. Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable
encryption with forward privacy. Popets 2018(1), 5–20 (2018)

18. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryp-
tion using intel sgx. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 765–782. ACM (2017)

19. Frimpong., E., Bakas., A., Dang., H., Michalas., A.: Do not tell me what i cannot
do! (the constrained device shouted under the cover of the fog): implementing
symmetric searchable encryption on constrained devices. In: Proceedings of the 5th
International Conference on Internet of Things, Big Data and Security, IoTBDS,
vol. 1, pp. 119–129. INSTICC, SciTePress (2020). DOI: https://doi.org/10.5220/
0009413801190129

20. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in
two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 20

21. Ghareh Chamani, J., Papadopoulos, D., Papamanthou, C., Jalili, R.: New con-
structions for forward and backward private symmetric searchable encryption. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’18. Association for Computing Machinery (2018)

https://doi.org/10.1007/978-3-030-37231-6_28
https://doi.org/10.1007/978-3-030-37231-6_28
https://eprint.iacr.org/2019/813
https://eprint.iacr.org/2019/813
https://pypi.org/project/sjcl/
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
http://www.sciencedirect.com/science/article/pii/S1574013716302167
https://doi.org/10.5220/0009413801190129
https://doi.org/10.5220/0009413801190129
https://doi.org/10.1007/978-3-662-53015-3_20

336 H.-V. Dang et al.

22. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

23. Han, J., Yang, Y., Liu, J.K., Li, J., Liang, K., Shen, J.: Expressive attribute-based
keyword search with constant-size ciphertext. Soft Comput. 22(15), 5163–5177
(2017). https://doi.org/10.1007/s00500-017-2701-9

24. Hoang, T., Ozmen, M.O., Jang, Y., Yavuz, A.A.: Hardware-supported oram in
effect: practical oblivious search and update on very large dataset. Proc. Priv.
Enhancing Technol. 2019(1), 172–191 (2019)

25. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS. Citeseer (2012)

26. Li, J., Zhang, L.: Attribute-based keyword search and data access control in cloud.
In: Proceedings - 2014 10th International Conference on Computational Intelli-
gence and Security, CIS 2014, pp. 382–386 (2015)

27. Miao, Y., et al.: Privacy-preserving attribute-based keyword search in shared multi-
owner setting. IEEE Trans. Dependable Secure Comput. (2019)

28. Michalas, A., Bakas, A., Dang, H.V., Zalitko, A.: Abstract: access control in search-
able encryption with the use of attribute-based encryption and sgx. In: Proceedings
of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop,
CCSW’19, p. 183. ACM (2019)

29. Michalas, A., Bakas, A., Dang, H.-V., Zaltiko, A.: MicroSCOPE: enabling access
control in searchable encryption with the use of attribute-based encryption and
SGX. In: Askarov, A., Hansen, R.R., Rafnsson, W. (eds.) NordSec 2019. LNCS,
vol. 11875, pp. 254–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35055-0 16

30. Paladi, N., Gehrmann, C., Michalas, A.: Providing user security guarantees in
public infrastructure clouds. IEEE Trans. Cloud Comput. 5(3), 405–419 (2017).
https://doi.org/10.1109/TCC.2016.2525991

31. Stanford: Stanford javascript crypto library (2020). https://github.com/
bitwiseshiftleft/sjcl

32. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS, vol. 71, pp. 72–75 (2014)

33. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the
power of file-injection attacks on searchable encryption. In: 25th USENIX Security
Symposium, pp. 707–720 (2016)

https://doi.org/10.1007/s00500-017-2701-9
https://doi.org/10.1007/978-3-030-35055-0_16
https://doi.org/10.1007/978-3-030-35055-0_16
https://doi.org/10.1109/TCC.2016.2525991
https://github.com/bitwiseshiftleft/sjcl
https://github.com/bitwiseshiftleft/sjcl

	Attribute-Based Symmetric Searchable Encryption
	1 Introduction
	2 Background
	3 Architecture
	4 Our Construction
	4.1 Formal Construction

	5 Security Analysis
	6 Experimental Results
	7 Related Work and Comparison
	8 Conclusion
	References

