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Abstract: The serverless execution model allows application developers to deploy their software using tiny functions
with zero administration, no handling of resource provisioning, monitoring and scaling. Due to such advan-
tages, the serverless model emerged as a new promising paradigm, where pay as you go offerings can be found
by all public cloud providers. However, these offerings encourage vendor lock-in. This paper aims to address
the vendor lock-in issue using a novel framework that combines the strength of an agnostic infrastructure con-
figuration based on the Constructs Programming Model, and the creation of abstraction layers that supports
function logic by handling provider-specific integration. The proposed framework abstracts away the speci-
ficities and complications of the various underlying serverless platforms and the application developers are
only required to provide their specific functions. The evaluation consists of the deployment of a benchmark
application across different cloud providers to demonstrate the ease and flexibility of the framework.

1 INTRODUCTION

Cloud computing has immensely changed the provi-
sion of computing, both for individual and business
users. Since its inception, adoption of cloud services
has continued to grow. This is evident from the cur-
rent market size of 2022, which is estimated as 483.98
billion $ and is expected to witness a compound an-
nual growth rate of 15.7% to reach 1,554.94 billion
$ by 2030. This is not surprising considering the
inherent characteristics of cloud Infrastructure-as-a-
Service (IaaS) model, which takes away the respon-
sibility of managing hardware from customers, and
offers economic benefits as well as operational effi-
ciencies (Marston et al., 2011). This is further rev-
olutionised by the serverless model, which has also
taken away the responsibility of resource provision-
ing and tasks such as run-time management, monitor-
ing, and scalability (Baldini et al., 2017). As a re-
sult, the serverless model emerged as a new promis-
ing paradigm, where pay as you go offerings can be
found from all public cloud providers, e.g. AWS
Lambda, Google Functions, Azure Functions, and
Tencent SCF.

These offerings allow developers to just deploy
their code for execution using tiny functions with no
administration overhead. However, each of these rely
on the use of their own underlying infrastructure and
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services, hence resulting in vendor lock-in, where ap-
plication owners get restricted to the use of services
from a specific provider. The lock-in issue is implicit
to the design of cloud solutions by choice; however,
it plays a role in slowing the adoption of cloud, as
organisations are concerned with the associated tech-
nical and legal issues of lock-in (Opara-Martins et al.,
2014). Hence, any system that helps loosen vendor
lock-in, contribute to an additional growth of cloud
and support a healthier environment where applica-
tion owners can be empowered to freely move be-
tween different clouds (Kumar, 2019).

The lock-in issue is not specific to serverless of-
ferings. It also remains a challenge in case of IaaS
resource offerings. Over the years, a number of so-
lutions such as Cloudify (Cloudify, 2022), Terraform
(HashiCorp, 2022), MiCADO (Kiss et al., 2019; Ul-
lah et al., 2021), Cloudiator (Baur and Domaschka,
2016), PrestoCloud (Verginadis et al., 2017), have
been developed to improve the portability and inter-
operability of cloud solutions. Similarly, a number
of such frameworks have also emerged to resolve
the lock-in issue for the serverless model. For ex-
ample, some industry initiatives include The Server-
less Framework (Serverless, 2022), Spring Cloud
(Tanzu, 2022), Midway Serverless(Midway.js, 2018),
Up (Apex, 2021), , Wing (Ben-Israel, 2022) and some
notable academic ones include Lithops (Sampe et al.,
2021), Kotless (Tankov et al., 2019), Nimbus (Chatley
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and Allerton, 2020), Functionizer (Matei et al., 2021).
These solutions have contributed towards achieving
some aspects of agnosticism. However, they fell short
in various aspects such as facilitating an overall ag-
nostic functionality in terms of infrastructure con-
figuration, function deployment and execution (e.g.
(Serverless, 2022; Apex, 2021; Sampe et al., 2021;
Midway.js, 2018)), lack of developers friendly ab-
straction layer (e.g. (Matei et al., 2021; Casale et al.,
2020)) or lack of agnostic integration of extended
components and platform configuration (e.g. (Tankov
et al., 2019; Tanzu, 2022)). All these aspects are es-
sential to be part of a framework that aims to provide
a complete agnostic solution in terms of provider and
language independence. This paper presents YASF
(yet another serverless framework), which also aims
to facilitate application developers to make use of
fully-managed serverless environments without risk-
ing lock-in.

The rest of this paper is organised as follows. Sec-
tion 2 consists of state-of-the-art, where a thorough
review of related works in Section 2.2 is carried out
in light of a novel taxonomy (Section 2.1). Section 3
reflects on the reviewed solutions and identifies a set
of requirements for YASF. Section 4, presents YASF
framework, where Section 5 demonstrates the appli-
cability of YASF using a benchmark application and
two public clouds. Lastly, Section 6, concludes and
briefly discusses future work.

2 STATE OF THE ART REVIEW

This section discusses the related vendor-agnostic
serverless solutions (VaSS). However, to perform a
thorough review, we initially introduce a novel tax-
onomy. This enables us to accumulate, analyse and
synthesise the related work, using a uniform frame-
work. This also aims to highlight the importance of
why there is the need to propose yet another serverless
solution. The following section briefly introduces the
proposed taxonomy, where the next section presents
the review.

2.1 Taxonomy

Figure 1 presents our taxonomy, which consists of at-
tributes that are essential to the core implementation
of a VaSS. These attributes are identified after a thor-
ough review of existing solutions. These attributes are
structured into following categories:
Functionalities grouped together the following key
operations that a VaSS should provide to its users:

• Infrastructure configuration: A VaSS should

provide a mechanism that enables developers
to describe the infrastructure requirements of
their serverless functions, without having to deal
with the underlying vendor-specific configura-
tions. This attribute measures whether a VaSS
provides such a support in an agnostic way or not.

• Deployment: Function developers require tools to
be able to deploy functions along its required con-
figurations to a specific cloud provider without in-
vesting additional efforts especially in regards to
target a different (or new) provider. The deploy-
ment can be either Managed — where the deploy-
ment is carried by the solution — or Not managed
— where developers manually handle the deploy-
ment of additional assets.

• Function execution: Different cloud providers
have different requirements in relation to the spec-
ification of events and context information. These
requirements affect the way developers parse in-
puts/outputs of their functions. If not handled
properly, this may result in an incompatible for-
mat. In this regard, this attribute evaluates the un-
derlying abstraction mechanism of a VaSS, which
can be either Provider agnostic — where a VaSS
provides an abstraction layer that allows devel-
oper’s code to be agnostic — or Provider depen-
dant — where developers are required to produce
different function assets for each cloud provider.

Design grouped together aspects that are related to the
design of a serverless solution itself. These include
the following aspects:

1. Integration: Serverless functions usually inter-
act with other infrastructure components, such
as with storage solutions, databases, and event
queues. The VaSSs are therefore required to pro-
vide a mechanism, which facilitates developers to
integrate functions with other components. Such a
support can be evaluated in two aspects: 1) the un-
derlying nature that the integration can be handled
within a solution, i.e. either in a provider agnostic
or dependent way, and (2) the level of provided
integration, which can be either only at the Func-
tion level — the bare minimum requirement for a
solution — or also include the Extended level —
where agnostic support for interaction with addi-
tional components is provided.

2. Extendability: The success of a VaSS mainly re-
lies on the following key factors: how easy a so-
lution adapts to vendor changes, enabling sup-
port for new vendors, languages, and the abil-
ity to maintain low complexity (or no changes)
from users viewpoint in case new capabilities are
added. Hence, it is important for a VaSS to sup-
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port the ability to incorporate new vendors, and
languages.

Current support evaluate existing ability of VaSSs
in terms of Providers, Languages, and their suitabil-
ity towards target Application type/s. This evaluation
helps in gauging the overall maturity of a VaSS,

Figure 1: Taxonomy.

2.2 Review of Existing Solutions

The solutions selected for review is the result of a two
step process: 1) We searched for relevant solutions
using terms like cloud (or multi-cloud or vendor) ag-
nostic (or independent) serverless (or FaaS) frame-
works (or solutions), 2) From the results, we further
selected solutions that have mainly focused on vendor
lock-in issue. During step 1, we commonly encoun-
tered solutions such as Fn, Knative, and OpenFaaS as
vendor-agnostic serverless solutions. These and other
such solutions followed a serverless approach. How-
ever, these solutions generally created a containerised
support for the functions that are further deployable
across multiple clouds. This is undoubtedly a valid
approach to tackle vendor lock-in. However, it also
results in giving up cloud native FaaS features such as
monitoring, billing per execution, and container free
management. Hence, all such solutions are consid-
ered as non-native FaaS platforms and therefore, do
not fall within the scope of the review carried out in
this paper.

All relevant solutions are grouped into two cat-
egories, namely industry and academic initiatives.
These are discussed in following sections, where their
summaries in light of the attributes from taxonomy
are presented in Table 1 and 2.

2.2.1 Industry Initiatives

The Serverless Framework (TSF) (Serverless, 2022)
supports a large number of cloud providers and pro-
gramming languages. Furthermore, it also provides
a huge number of plugins to support integration with
other AWS components such as API Gateway, Step
Functions, Alerts, and DynamoDB. However, the
configuration needed for enabling the integration is
required to be provided in an AWS specific manner,
which encourages lock-in. Furthermore, the same
level of support is not offered to integrate compo-
nents from other vendors. The Serverless Multicloud
Library (Microsoft, 2019) extends the TSF solution
with the key purpose of providing a more complete
provider-agnostic experience to users. This solution,
in contrast to TSF, only includes support for AWS and
Azure, where the support for Google cloud platform
is currently in progress. However, it has achieved an
extended level of agnosticism by enabling the support
to integrate the main components of both Azure and
AWS.

Spring Cloud Function (SCF) (Tanzu, 2022) also
supports a large number of vendors; however, it
only supports functions in Java language. Similarly,
the Midway Serverless framework (Midway.js, 2018)
only supports Node.js. SCF’s agnostic behaviour is
limited to function level and does not facilitate ag-
nostic integration of other components as part of the
deployment phase. However, it takes ’recognising
and parsing incoming events and output compatibil-
ity of the functions’ into consideration. In contrast
to the SCF, the Midway Serverless (Midway.js, 2018)
offers some integration with different cloud’s stor-
age solutions, e.g. with Alibaba (Alibaba, 2022)
and Tencent (Tencent, 2022) storage systems. How-
ever, the provided procedure requires to perform the
integration is not agnostic. Moreover, similar to
TSF, both these solutions also require making explicit
cloud-specific changes when switching the deploy-
ment across different cloud environments.

The Up framework (Apex, 2021), despite claim-
ing to be a platform-agnostic, its current support is
only limited to AWS. Up supports multiple program-
ming languages including Golang, Node.js, Crystal,
Python, Java and Clojure. However, additional fea-
tures are hidden behind a commercial plan. Lastly,
Wing (Ben-Israel, 2022) distincts itself from other so-
lutions by proposing a new programming language,
which incorporates both infrastructure configuration
and functions logic in a single asset. Wing language
definitions are agnostic. However, their solution cur-
rently only supports AWS.
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2.2.2 Academic Initiatives

The scope of Functionizer (Matei et al., 2021) is
larger than just serverless agnostic behaviour across
different providers. It also facilitates simultaneous
cross-cloud deployment, real time monitoring, and
most importantly, utility-based optimisation. Func-
tionizer uses CAMEL modelling language (Camel,
2022), where developers write application specifica-
tion as CAMEL model, which has the ability to di-
rectly define a constraint programming model. Func-
tionizer accepts CAMEL model to solve the de-
fined cloud optimisation problem. A similar cross-
cloud approach, however, without the optimisation
aspect, is also proposed by Wurster et al. (Wurster
et al., 2018), where a well-known standardised
modelling language for cloud orchestration named
TOSCA (Lauwers and Tamburri, 2022) has been used
for abstraction. Wurster et al. suggests the use of ex-
isting TOSCA constructs (e.g., Node templates, Node
and Relationship types) to describe aspects of server-
less application (e.g., events, functions and event
source). In such a case, the interpretation and map-
ping of existing constructs of TOSCA rely on the
modeller, hence it cannot be adopted as a generic ap-
proach.

TOSCA currently lacks native support to model
serverless application (Wen et al., 2022). To address
this (Casale et al., 2020) within the scope of an in-
progress EU research project called RADON, aimed
to extend TOSCA with new constructs for modelling
serverless functions. Furthermore, they also intro-
duce a constraint definition language (CDL) for the
formal specification of serverless application require-
ments with a key purpose to increase automation in
their design. RADON aims to support serverless
functions, microservices, and data pipelines using a
uniform description approach by utilising the com-
bination of TOSCA and CDL annotation. Yussupov
et al. (Yussupov et al., 2022) focused on a similar
approach, where they proposed the use of business
process model and notation (BPMN) and TOSCA
to model orchestration of functions and their auto-
matic deployment. This solution, however, require
modellers to produce two different models. Firstly,
to produce a generic BPMN-based model represent-
ing the function orchestrations, which could be trans-
formed into a provider specific orchestration model
(e.g., ASL model for AWS). Secondly, to produce a
TOSCA model to define technology-agnostic func-
tion orchestration deployment model, which can be
executed (i.e., deployed and orchestrated) by any
TOSCA-compliant orchestrator.

Nimbus (Chatley and Allerton, 2020) makes use
of annotation-based configuration in contrast to the

above-mentioned approaches that are based on sepa-
rate configuration (or an additional layer of abstrac-
tion). Nimbus approach allows developers to define
functions and resources using internal annotations.
Such an approach reduces the need for explicit con-
figuration, however, their implementation approach
is function-centric, where the extended integrations
are supported, however, these are not deployed with
the function but expected to have already been im-
plemented in an external infrastructure configuration.
Furthermore, though, the overall architecture of Nim-
bus is cloud-agnostic; their current support is lim-
ited to AWS only. Moreover, it only supports Java
Functions. Similarly, Lithops (Sampe et al., 2021)
is for the Python language and specifically designed
to support parallel data intensive systems that follow
the Map-Reduce programming model. In contrast to
Nimbus, Lithops has the support for a large number
of cloud providers and relies on an external YAML
based configuration. However, its agnostic behaviour
is limited in terms of storage services and not ex-
tended to other services of the providers. Lastly, Kot-
less (Tankov et al., 2019) is specifically for the Kotlin
language, where the use of a client side DSL is pro-
posed to facilitate developers to write their functions
using the proposed DSL annotations to automatically
generate Terraform based deployment code. The is-
sue with Kotless is that it does not interact with cloud
providers to deploy the code. Instead, it provides an-
other Gradle based deployment plugin that is used for
deployment. Furthermore, various infrastructure con-
figuration related attributes, such as integration with
storage components, is not agnostic.

3 REQUIREMENTS

The following paragraphs reflect on the review carried
out in Section 2.2 and introduce key requirements for
our proposed solution.
Developer’s Friendly Abstraction Layer. The
core function of a VaSS is to facilitate develop-
ers with an abstraction mechanism for describing
their applications. The reviewed solutions address
this challenge in two ways: 1) using a custom
DSL or annotation-based configurations such as Kot-
less (Tankov et al., 2019), Nimbus (Chatley and Aller-
ton, 2020), Lithops (Sampe et al., 2021); 2) using
a standardised modelling language, such as the use
of Camel by Functionizer (Matei et al., 2021) or
the use of TOSCA in (Wurster et al., 2018; Casale
et al., 2020; Yussupov et al., 2022). Both of these
approaches facilitate agnostic behaviour. However,
such approaches also expect developers to learn an-
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Table 1: Key functionalities and design characteristics of the reviewed solutions.

Key operations Design
Platform integration Extendibility

Agnostic Infras-
tructure Configu-
ration

Managed De-
ployment

Agnostic Func-
tion Execution

Level Agnostic Configu-
ration

Vendors Languages

In
du

st
ry

The Serverless Framework E
Serverless Multicloud Library E
Spring Cloud Function F
Midway Serverless E
Up E
Wing E

A
ca

de
m

ic

Lithops (Sampe et al., 2021) E
Kotless (Tankov et al., 2019) F
Nimbus (Chatley and Allerton,
2020)

E

Functionizer (Matei et al., 2021) F
Wurster et al. (Wurster et al., 2018) E ?
Yussupov et al. (Yussupov et al.,
2022)

E ?

RADON (Casale et al., 2020) ? E
Function level (F), Extended level (E)

Table 2: Support currently provided by the reviewed solutions.
Vendors Languages

A
pp

ty
pe

A
W

S

G
oo

gl
e

A
zu

re

A
lib

ab
a

C
lo

ud
fa

re

Fn K
na

tiv
e

K
ub

el
es

s

IB
M

O
pe

nW
hi

sk

sp
ot

in
st

Te
ns

en
t

C
#

C
ry

st
al

F# G
o

Ja
va

K
ot

lin

N
od

e.
js

Py
th

on

R
ub

y

In
du

st
ry

The Serverless Framework G
Serverless Multicloud Li-
brary

B

Spring Cloud Function G
Midway Serverless B
Up B
Wing G

A
ca

de
m

ic

Lithops BP
Kotless B
Nimbus G
Functionizer G
Wurster et al. (Wurster et al.,
2018)

This work only consist of a prototypical implementation where OpenTOSCA was used to orchestrate an example scenario. G

Yussupov et al. (Yussupov
et al., 2022)

G

RADON (Casale et al., 2020) G
Generic (G), Backend (B), Batch Processing (BP)

other tool and/or modelling language for writing ab-
stract models. Such a functionality can be avoided by
empowering developers to write the required models
(and configuration) using a tool of their choice.
Overall Agnostic Functionality. A VaSS, as dis-
cussed in Section 2.1, should consider the follow-
ing four agnostic aspects: infrastructure configura-
tion, function deployment, integration of extended
components, and platform configuration. It is evi-
dent from Table 1, only Serverless Multicloud Li-
brary (Microsoft, 2019) and Radon (Casale et al.,
2020) support these features. However, Serverless
Multicloud Library only supports Node.js and is spe-
cific for batch processing type applications, where
Radon, as mentioned earlier, is based on TOSCA, i.e.
it does not provide a developer friendly abstraction.
Simplicity and Extendibility. Many of the reviewed
solutions, e.g., Functionizer (Matei et al., 2021) and
Radon (Casale et al., 2020), facilitate agnostic de-
ployment of functions through their custom-built or-
chestrators. The scope of such systems is usually

much larger, where they also handle other tasks such
as monitoring, and scaling; and therefore, additional
components need to be deployed and executed con-
stantly. Hence, an overhead overall. In the serverless
execution model, such administration tasks are the re-
sponsibility of cloud providers. Hence, a VaSS should
avoid any such unnecessary overhead. Furthermore, a
VaSS should follow a modular and extendable archi-
tecture such that the support for new cloud providers
and languages can be easily added.

4 YASF: YET ANOTHER
SERVERLESS FRAMEWORK

YASF is our proposed solution to address the above-
mentioned requirements. Figure 2 depicts the high
level architecture of YASF. It mainly consists of three
components titled YASF Abstraction, YASF Core,
and YASF Resolvers. The following subsections ex-
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plain these components in detail followed by a de-
scription on the usage workflow of YASF in Sec-
tion 4.4.

4.1 YASF Abstraction

YASF Abstraction is the only component that is in
direct contact with the developer’s provided code.
YASF Abstraction allows agnostic executions of de-
veloper’s code across different providers, where oth-
erwise a change in code would have been required
in relation to a specific provider. More specifically,
YASF Abstraction guarantees agnostic function exe-
cution and extended platform integration by providing
an interface between providers’ invocation format and
function logic. The abstraction interface processes
the provider’s input into an agnostic input. Where
necessary, the YASF Abstraction also transforms the
function’s output, such that an agnostic response can
still be provided when vendors require a specific for-
mat for the function’s output. Furthermore, YASF
Abstraction also provides agnostic integration with
other cloud components, e.g. with a database stor-
age. As this normally requires provider-specific SDK
libraries, further attention is provided such that these
libraries are installed only in the function asset being
deployed against the relevant target provider.

The implementation of YASF Abstraction is de-
signed such that very minimal developer’s effort is
required to adapt their existing function code with
YASF Abstraction. Figure 3 presents a Python based
function as an example, where the developer only re-
quires to add two objects from YASF abstraction in-
cluding the entrypoint decorator and GenericContext.
The entrypoint decorator is responsible for provid-
ing abstraction for the event trigger input and func-
tion response output, where GenericContext provides
type definitions of the context variable, which con-
tains execution metadata. These additions to user
code are neither substantial nor specific to any cloud
provider. In the case of switching from one cloud
provider to another, not a single line of code change
is required. Our abstraction approach is similar to the
internal annotation-based approach provided by Nim-
bus (Chatley and Allerton, 2020). However, though
Nimbus supports extended integration of additional
components, these are not deployed with the func-
tion but expected to have already been implemented
in an external infrastructure configuration. In con-
trast, YASF infrastructure configuration aims to be
non-function specific and it is designed to support the
provisioning of other cloud resources as well.

4.2 YASF Core

YASF Core exposes agnostic constructs to devel-
opers that can be used to build a generic in-
frastructure configuration. These constructs are
based on the concept of Constructs Programming
Model (CPM) (AWS, 2022), or also known as
Cloud Development Kit (CDK), which developers
used to write Infrastructure as Code (IaC) with-
out having to learn a purpose-specific configura-
tion language such as TOSCA (Lauwers and Tam-
burri, 2022), CAMEL (Camel, 2022), or Terraform
HCL (Hashicorp, 2022). CPM empowers developers
to write cloud configurations in the language of their
choice and with a variety of features inherent from
the use of programming languages such as loops, con-
ditions and objects re-usability. The aforementioned
reasons highly favor the choice of this technology in
regard to the developer friendly abstraction. For ex-
ample, consider the following code snippets:

The snippet (A) is the definition of a generic cloud
provider with a requirement for region, where user
function aims to be deployed. The specific details
such as the choice of cloud providers and user cre-
dentials will be provided at deployment time. More
details on this is provided in Section 4.4. Snippet (B)
on the other hand, define the function asset by indi-
cating the underlying language runtime — Python in
this case — and other related attributes including: 1)
handler: name of the source file, 2) entrypoint: name
of the entrypoint function within source code, and 3)
functionAssets: file system reference to the bundled
function.

CPM is an emerging young concept for defining
IaC using familiar programming languages and rich
object-oriented APIs (AWS, 2020). It was initially
introduced by AWS. However, it is not AWS spe-
cific and is largely adopted by the open-source com-
munity such as Terraform (Howard, 2022), Kuber-
netes (cdk8s, 2021) and Projen (Projen, 2020). The
inherent features of CPM like the free choice of any
programming language and use of common program-
ming constructs as we seen in Figure 4 make YASF
Core more developer friendly in comparison to other
domain specific languages such as TOSCA, CAMEL
that demands learning of additional modelling con-
structs.

4.3 YASF Resolvers

YASF provides a repository of Resolvers, where a
specific Resolver is responsible for mapping the ag-
nostic infrastructure configuration, written using the
YASF Core component, and deploying it to a tar-
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Figure 2: YASF architecture.

from yasf import entrypoint, GenericContext

# Handles abstraction process and inputs/outputs
@entrypoint
def handler(event: dict, context: GenericContext):

# event/context received in same format
↪→ independently of cloud provider

# Developer provided code
# ...

Figure 3: Usage demonstration of abstraction decorator.

new GenericProvider(this,
{

continent: CONTINENTS.Europe,
coordinates: COORDINATES.West,
location: ”2”,

});

(a) Cloud requirements.

new GenericFunction(this,”demo−fun”,{
runtime: RUNTIMES.PYTHON39,
handler: ”demo handler”,
entrypoint: ”main”,
functionAssets: demoAssets,

});

(b) Function definition.
Figure 4: YASF Core snippets.

get cloud provider. A single Resolver supports one
or multiple cloud providers. Overall, YASF fol-
lows a generic and modular approach, where each of
the three components work independently from each
other. YASF facilitates easy extendability, where a
custom Resolver can be developed to target a new in-
frastructure (either private or public), or containerised
serverless solutions such as Knative, Fn and Open-
Faas. Adding a new Resolver will not have any im-
pact on existing support.

From a technical viewpoint, YASF Resolvers ref-
erence YASF Core. The agnostic infrastructure con-
structs provided through YASF Core become input
into YASF Resolver such that the agnostic infras-
tructure can be translated to provider-specific require-
ments. When utilised in a project, YASF Resolvers

are dynamically loaded by YASF Core, meaning that
a change of Resolver does not require a change of im-
ports or definitions in the infrastructure configuration.
Additionally, a simple CLI tool is offered that facili-
tates developers to select a Resolver of their choice in
case multiple Resolvers are available.

4.4 YASF Usage Workflow

The usage workflow of YASF can be seen in Figure 5.
The following paragraphs explain the involved steps.
1. To start, developers can simply apply YASF Ab-

straction into their functions’ code as explained

Figure 5: Developer usage steps of the solution.
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earlier in Section 4.1. Developers can also skip
this step, if the aim is to target a specific provider,
or the required infrastructure does not include any
function, or the target code already includes some
abstraction that can manage function execution on
a given provider.

2. This step is compulsory, where a CDK-based con-
figuration using YASF Core needs to be produced.
In this step, the developer specifies their func-
tions, the code bundle to be deployed, the run-
time, and other details like the configuration re-
lated to memory, location, environment variables,
etc. Furthermore, if required, integration details
with other services (e.g. NoSQL database) should
be provided. It is important to note that YASF
Core is not necessarily function-centric; for ex-
ample, a configuration without any function only
consisting of a deployed database for external pur-
poses is also possible.

3. Prior to deployment, the developer is required to
provide their credentials separately to the CDK-
based configuration previously produced. Differ-
ent cloud providers may require different informa-
tion, e.g. Google Cloud Platform requires a Pro-
jectID to be specified in addition to credentials.
Providing all such details is the responsibility of
developers. For both practicality and security,
such details are not included as part of the CDK-
based configuration. Furthermore, YASF does not
handle account creation, hence any account setup
is external to YASF.

4. Finally, a YASF Resolver can be used to deploy
function/s and other infrastructure to a specific
cloud. YASF Resolvers fetch credentials from
the host system’s environment variables. This ap-
proach also allows that the deployment process
can be carried out locally and also in CI/CD setup,
where credentials could be set as CI/CD secrets.

It is important to note, once steps 1 and 2 are
completed, a developer can switch between cloud
providers by repeating only steps 3 and 4, where users
can deploy their functions by simply providing cre-
dentials while using the same or a different supported
YASF Resolver. Once a function is deployed (see Fig-
ure 6), YASF Abstraction is the only persisted com-
ponent in the final state, which handles the interac-
tion between user code and provider execution. As
mentioned earlier, developers can also skip the use
of YASF Abstraction. In such a case, user code is
responsible for this mediation itself. This decoupled
nature of YASF components is one key difference be-
tween our solution and other related works such as
(Chatley and Allerton, 2020; Serverless, 2022; Ben-

Israel, 2022). Such decoupling empowers developers
to freely choose to deploy their functions by applying
the YASF Abstraction or simply use YASF framework
for deployment.

5 USE CASE DEMONSTRATION

YASF1 is fully agnostic. Currently, we have im-
plemented two YASF Resolvers to support AWS
and Google environments. Both these Resolvers are
based on a well-known IaC orchestrator called Ter-
raform (HashiCorp, 2022), which supports around
1000 providers (HashiCorp, 2022). The implemented
YASF Resolvers provide a mapping between the
developer-provided agnostic configuration and cor-
responding Terraform based provider specific con-
structs. While Terraform was chosen for the develop-
ment of the first two Resolvers, this does not prevent
any other technology to be used for new Resolvers.
The remainder of the section further discusses the use
of a benchmark application for demonstrating the ap-
plicability of YASF by deploying it to two different
clouds without making any changes.

The benchmark application (Tai Nguyen Bui,
2019) is a prototype for a basic inventory system
that includes CRUD operations on products using a
NoSQL database. Each of these operations is encap-
sulated in a different function. This application was
originally developed for AWS and therefore it uses
AWS specific input/output formatting, and vendor-
specific calls to DynamoDB, which is an Amazon
specific NoSQL database.

To make the benchmark application executable
across different cloud environments, it needs to de-
couple from the specificities of AWS, especially

Figure 6: Function post deployment architecture.

1YASF implementation: https://github.com/YaSF-
serverless
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the use of AWS specific input/outputs formatting,
and calls to DynamoDB. This is performed using
the YASF Abstraction step discussed earlier in Sec-
tion 4.4. The difference before and after the use of
NoSQL integration can be seen in Figure 7.

Following the above abstraction step, a vendor-
agnostic infrastructure configuration (see Figure 8) is
prepared. The lines L:4-7 are responsible for defining
the region for execution, L:8-9 provision a NoSQL
Database with the specified primary key, L:10-28 de-
fine the provision of 5 serverless functions. This also
demonstrates how the advantage of a programming
language enables code reusability in configuration.
Finally, L:29-30 provide each function access rights
to the provisioned NoSQL database.

Following the above two steps, the benchmark ap-
plication can be deployed into any cloud environment
without changing code and also without re-writing the
configuration. Figure 9 depicts a post-deployment ar-
chitecture of the benchmark application on the AWS
and Google platforms, where the same configuration
has been used across both environments. When un-
derlying cloud-specific components have different be-
haviours, it is the responsibility of YASF Abstraction
to provide a standard interface. Lastly, it is impor-
tant to note that YASF neither deploy an additional
component nor rely on any orchestration tool that re-
quires to stay on at all time. Hence, no additional
overhead in operating cost. The only minor computa-
tional overhead is the inclusion of YASF Abstraction
— responsible for all the required abstraction — into
the developer’s function code. Hence, it directly be-
come part of the user code and runs in the function
space. The revised implementation of benchmark ap-
plication is available here2.

dynamoDB=boto3.resource(’dynamodb’
↪→ )

class ProductService:
def init (self):

self.dynamoDBClient =
dynamoDB.Table(

os.environ[’TABLE’]
)

def getItem(self, sku):
return

self.dynamoDBClient.get item(
Key={’sku’: sku})

(a) Original implementa-
tion.

from yasf.nosqldb import client
class ProductService:

def init (self):
self.table name =

os.environ[’TABLE’]
def getItem(self, sku):

return client.get item(
table name=self.table name,
key name=’sku’,
key value=sku )

(b) YASF Abstraction.
Figure 7: YASF Abstraction integration code snippets.

2Benchmark application: https://github.com/YaSF-
serverless/yasf/tree/main/example/aws-lambda-benchmark

1 class ProductsStack extends GenericStack {
2 constructor(scope: Construct, name: string) {
3 super(scope, name);
4 new GenericProvider(this, {
5 continent: CONTINENTS.Europe,
6 coordinates: COORDINATES.West,
7 location: ”2”, })
8 const productsDb = new GenericNoSQLDatabase(this, ”products−

↪→ db”, {
9 primaryKey: ”sku”, })

10 const functionAssets = new FunctionAssets({
11 path: ”build”,
12 archiveName: ”src.zip”,
13 bundlingCommands: [
14 ”mkdir −p build && rm −rf build/* && cp −r src/app/*

↪→ build/ && cp src/requirements.txt build/”,
15 ”pip install −r src/requirements−local.txt −t build/”,
16 ”cd build && zip −r src.zip .” ], })
17 const createFunction = (id: string, name: string): IGenericFunction

↪→ => new GenericFunction(this, id, {
18 runtime: RUNTIMES.PYTHON39,
19 handler: ”handler”,
20 functionAssets: functionAssets,
21 entrypoint: name,
22 envVariables: {
23 ”PRODUCTS TABLE”: productsDb.name, } })
24 const createProductFunction = createFunction(”create−product”, ”

↪→ createProduct”)
25 const getProductFunction = createFunction(”get−product”, ”

↪→ getProduct”)
26 const updateProductFunction = createFunction(”update−product”, ”

↪→ updateProduct”)
27 const deleteProductFunction = createFunction(”delete−product”, ”

↪→ deleteProduct”)
28 const listProductsFunction = createFunction(”list−products”, ”

↪→ listProducts”);
29 [createProductFunction, getProductFunction, updateProductFunction

↪→ , deleteProductFunction, listProductsFunction].forEach((
↪→ functionInstance) => {

30 db.grantReadWriteAccess(functionInstance) }) }
31 }

Figure 8: YASF infrastructure configuration for the bench-
mark inventory application.

Figure 9: Use case deployment architecture.

6 CONCLUSIONS

This paper thoroughly explored existing serverless so-
lutions that aimed to resolve the vendor lock-in is-

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

54



sue. We highlighted that the lock-in issue is still
a challenge. For this purpose, we proposed YASF
— a simple and generic vendor-agnostic serverless
framework. YASF follows a loosely coupled, modu-
lar and extendable architecture that empowers devel-
opers to enable their serverless applications to be de-
ployable to different cloud environments without risk-
ing vendor lock-in. YASF, in addition to the function
level agnosticism, also facilitates an extended level of
integrating provider services in an agnostic manner.
As an initial prototypical implementation, YASF in-
cludes support for Amazon and Google cloud envi-
ronments; and Python-based functions. Future work
will focus on two key directions: On one hand, we
aim to extend our taxonomy to evaluate the serverless
solutions with respect to existing standards regarding
FaaS with a particular focus on the inclusion of as-
pects like Function call, Return interfaces, and Trig-
gers. On the other hand, we aim to extend support
for other providers and languages; support for custom
overrides and escape hatches; and finally the facilita-
tion of YASF deployments in CI/CD environments.
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