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Abstract Cloud elasticity augments applications to

dynamically adapt to changes in demand by acquiring or

releasing computational resources on the fly. Recently, we

developed a framework for cloud elasticity utilizing mul-

tiple feedback controllers simultaneously, wherein, each

controller determines the scaling action with different

intensity, and the selection of an appropriate controller is

realized with a fuzzy inference system. In this paper, we

aim to identify the similarities between cloud elasticity and

action selection mechanism in the animal brain. We treat

each controller in our previous framework as an action, and

propose a novel bioinspired, soft switching approach. The

proposed methodology integrates a basal ganglia compu-

tational model as an action selection mechanism. Initial

experimental results demonstrate the improved potential of

the basal ganglia-based approach by enhancing the overall

system performance and stability.

Keywords Cloud elasticity � Dynamic resource

provisioning � Fuzzy logic � Basal ganglia � Soft switching �
Auto-scaling � Elastic feedback controller

Introduction

The popularity of web applications such as social net-

working, wikis, news portals and e-commerce applications

is posing new challenges to the management of underlying

computational resources [1]. Such applications are subject

to unpredictable workload conditions that vary from time

to time. For example,

i The higher workload on e-commerce website during

festivals or promotional schemes than normal such

as Amazon Christmas sale [2] and recent China’s

singles day’ sale [3].

ii A 10-time increase that Facebook experienced in

their users within a span of three hours [4].

iii Web applications with diurnal pattern, where the

workload arrival rate at day time is higher than night

(e.g. Wikipedia trace [5]).

The performance of such applications is of utmost impor-

tance, as poor performance can result in the violation of

service level objectives (SLO). SLO violation has a direct

consequence of losing customers and thus some business,

e.g. every 100 ms of latency costs Amazon 1 % in sales

[6].

Cloud computing with attractive features of pay-as-you-

go pricing model and elasticity is a perfect match to host

web applications that hold dynamically varying workloads.

Cloud elasticity allows applications to dynamically adjust

the underlying resources as closely as possible to the

application demands, in response to the changes observed

in the environment such as workload fluctuations. This

enables cloud customers to pay only for the resources that

are used [7]. The client has to provide an elastic policy that

maintains the performance of a system at a desired level, as

well as minimize the infrastructure running cost. However,
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providing such an elastic policy that determines the right

amount of cloud resources to meet system performance

goals is a challenging task [8, 9].

Control theory therefore provides a systematic

methodology to develop feedback controllers [10, 11] to

implement the elasticity. Such methods are resilient to

disturbances caused by workload and usually satisfy a

constraint or guarantee to maintain the output of a system

to a desired value [12]. An elastic feedback controller

maintains the performance of systems close to a desired

reference point by adjusting a manipulated variable, such

as the number of running virtual machines [13]. The

majority of existing proposals for elastic feedback con-

trollers are designed with the use of one model that cap-

tures the system behaviour over an entire operating period.

However, such approaches cannot perform well for sys-

tems that hold unpredictable workload conditions.

Considering the time-varying workload nature of cloud

web applications, we have previously proposed an intelli-

gent multi-controller-based framework for cloud elasticity

problems [14]. This framework distributes the system

among three feedback controllers, where each controller

can be designed for a particular operating region. The three

controllers employed are named Lazy, Moderate and Ag-

gressive. A switching mechanism was developed to deter-

mine the suitable controller at runtime. The results

obtained using this method demonstrate a higher potential

in achieving system-stated performance. However, such

methods are subject to bumpy transitions that can lead

systems to an unstable state [15, 16].

Determining the optimal actions is an action selection

problem and has been the focus of research on many fields

[17, 18]. There are evidences available which prove that

the decision of ‘‘what has to be done next’’ in animal’s

brain is managed centrally using a switching mechanism in

a brain nuclei called basal ganglia (BG) [19, 20]. Using this

phenomenon, we aim to identify the opportunity to exploit

a biologically inspired approach of action selection for

cloud elasticity. This enables us to treat the three con-

trollers in our previous approach as actions thus enhancing

our work to propose a bioinspired soft switching approach.

The selection of right controllers in more biologically

plausible method will increase the possibility of smoother

transitions that result in better system stability.

The contributions of this paper comprise the following:

1. Formulation of cloud resource provisioning as an

action selection problem to demonstrate the applica-

bility of bioinspired soft switching approach;

2. Integration of the BG-based computation model

developed in [21, 22];

3. Fuzzy logic-based salience generation model;

4. Evaluation of the proposed approach in comparison

with some existing elastic approaches using real

workloads.

The rest of the paper is organized as follows. Following an

overview of related work and relevant concepts, we

introduce our previous approach and new basal ganglia-

inspired cloud resource provisioning methodology. This is

followed by the description of prototypical implementa-

tion, comparative simulation results and finally, some

concluding remarks and future work are provided.

Related Work

The existing literature on cloud elasticity is abundant.

However, to the best of our knowledge, there is no such work

that exploits a bioinspired action selection mechanism for

cloud resource provisioning. Our motivation of this work

comes from the use of bioinspired approaches in complex

systems for intelligent decision-making in fields like

autonomous vehicle systems and robotics [16, 18, 23–28].

Focusing on elasticity literature, the resource provi-

sioning proposal is versatile in nature as it highlights the

use of different techniques such as control theoretical

feedback controllers, threshold-based rules and machine

learning [13, 29]. The use of threshold-based rules is

mostly common because of the commercially available

solutions such as Amazon [30] and Rightscale [31]. Aca-

demic solutions are available as well, e.g. [32, 33]. The

appealing feature of rule-based techniques is its simplistic

nature. However, they require an in-depth knowledge of

the underlying system to properly set up the rules [13].

Secondly, they are unable to cope with sudden increase in

workload [4].

Machine learning methods such as reinforcement

learning are also used to implement elasticity [6, 34, 35].

However, such methods are often criticized for bad per-

formance due to long online training time and their

inability to cope with sudden burst [13]. Other approaches

include the use of elastic feedback controllers of various

nature (e.g. fixed [11, 36, 37] or adaptive [10, 38]). Both

the fixed and adaptive approaches have their own merits

and drawbacks. For example, the fixed approaches are

criticized for unsuitable with dynamic and unpre-

dictable workload [39], while the adaptive controllers have

been blamed for unable to cope with sudden burst in

workload [13] and high computational cost because of

online estimation [39]. The multi-model approach in [39,

40] is analogous to our approach, but with the following

two main differences: firstly, their selection of suit-

able controller is only based on the prediction of control
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error; secondly, it is not clear how the system can be

partitioned into submodels. The approaches from [41–43]

are different in the context, where each of the approaches is

applicable at the data centre level, while our approach

advocates fine-grained resource control over the applica-

tion level.

Action Selection, Basal Ganglia and Elastic
Controller

Action selection is referred to the process of selecting

what to do next from a set of actions by an agent based

on some knowledge of internal state, and some provided

sensory information of environmental context to best

achieve its desired goal [44]. Over the period, researchers

have learnt that in animal’s brain, the problem of action

selection is handled through the use of a central switching

mechanism [19, 20], which is implemented by a group of

subcortical nuclei collectively referred as basal ganglia

(BG).

Based on the functional anatomy of BG, various func-

tional models of BG have been proposed [17, 21, 22, 45–

47]. Focusing on the computational model [21, 22], com-

peting actions are represented throughout the nervous

system. The brain subsystems send excitatory signals that

represent the behavioural expressions to the BG. Each

behavioural expression defines an action in BG, and its

strength is determined by the salience that represents the

activity level of its neural representation. These actions are

mediated through the release of inhibitory signals. Thus in

every iteration, the functional model accepts a set of sal-

ience signals and produces a set of selected and unselected

signals. The model can be run in one of three modes, i.e.

Hard, Soft or Gate mode. A maximum of one action can be

selected in Hard mode, whereas multiple actions can be

selected in Soft and Gate modes. However, in Soft mode,

the selected actions are returned as an output, whereas in

the case of Gate, the model returns the proportion of each

selected action. For a detailed functional anatomy of BG

refer to [48].

The elasticity controller takes a scaling decision based

on the current system performance, the available envi-

ronmental information such as workload disturbances and

internal state such as CPU utilization, and memory con-

sumption. Analysing the description of elastic controllers

and the general definition of action selection problem, we

can argue that an elastic controller is an autonomous

agent and the problem of selecting the suitable controller

by our previous approach can be mapped as an action

selection problem. Therefore, we aim to integrate the BG

computational model as an action selection mechanism.

The problem can be defined as how to select the right

controller, which results in an efficient readjustment of

the underlying virtual machines as per the needs at that

point of time.

Multi-controller-Based Cloud Resource
Provisioning

In [14], we proposed a multi-controller-based approach to

implement cloud elasticity. Considering the time-varying

workload nature of the cloud-based web applications, this

approach integrates multiple elastic feedback controllers

simultaneously. Each controller can be designed specifi-

cally for different operating region. Existing research on

the use of multiple controllers still lacks a standard

approach that determines the partitioning of a system

among subcontrollers [49]. Therefore, this methodology

uses the distribution of workload intensity into various

categories such as low, medium and high by domain

experts as a partitioning criterion to design multiple mod-

els. A switching methodology is developed to decide the

suitable controller at runtime, based on current system

behaviour. Figure 1 shows the architecture of this frame-

work, whereas the following subsections explain the vari-

ous components of the framework.

Control Policy

The three controllers employed as can be seen in Fig. 1

are named Lazy, Moderate and Aggressive. They can be

of any type. However, we have used the integral control

law for each one of them because of its simplistic nature

and the ability to remove the steady-state errors [11].

Moreover, it has been also used for some similar prob-

lems [11, 36]. The average CPU utilization is used as a

performance metric, whereas the number of virtual

machines is used as control input. This control method-

ology adjusts the number of virtual machines to keep the

CPU utilization at a desired level. The integral control

law can be defined as follows:

utþ1 ¼ ut þ Ki � ðyref � ytÞ ð1Þ

At each iteration, ut?1 represents the new number of virtual

machines, while ut denotes the current number of virtual

machines. Ki is the integral gain parameter, which can be

obtained offline using a standard procedure [15]. yref rep-

resents the desired CPU utilization, and yt is the measured

CPU utilization obtained from system monitors.

994 Cogn Comput (2016) 8:992–1005
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System Monitoring

Every cloud provider facilitates their customers with an

application programming interface (API) or monitoring

service to get access to various system level performance

metrics and log files, e.g. Cloudwatch by Amazon. The

elastic scaling decision is dependent on these metrics as

they represent the system behaviour at a particular time.

Thus the system monitoring component of an elastic con-

troller can make use of system provided API to obtain up-

to-date measurement of various performance metrics.

Switching Mechanism

The switching mechanism selects a suitable controller at

each iteration based on the information obtained from

system monitoring component. This mechanism is actually

a fuzzy inference system (FIS), which is constructed using

the following three standard steps: (1) specifying domain

knowledge, (2) defining membership functions and (3)

fuzzy rules. A brief description of each step is provided

below.

– Domain knowledge: The knowledge base of the system

consists of three parameters: Workload, ResponseTime

and ControlError. The Workload and ResponseTime

are adapted from the work done in [4], where they are

constructed using the knowledge obtained from domain

experts (i.e. architects and administrators). The Con-

trolError represents the difference between the desired

and measured CPU utilization which is represented as:

et ¼ yref � yt ð2Þ

The ControlError has been divided into three lin-

guistic variables (i.e. Positive, Normal and Negative)

which are obtained using the trial and error method

through experimentation. The Positive specifies that the

measured CPU utilization is less than the desired,

whereas the Negative represents that the measured CPU

utilization is higher than the desired level. The Normal

represents that either the error is 0 or within a margin of

uncertainty due to noise or inaccuracy in the mea-

surement. The full ranges of all three parameters can be

seen from Table 1.

– Membership functions: This converts crisp input into

corresponding fuzzy value. Introducing membership

functions is the first step of fuzzification process [50],

which defines the degree of crisp input against its

linguistic variables in the range [0,1]. The FIS in our

case contains three inputs and one output fuzzy

variables and therefore, four membership functions in

total. Figure 2 illustrates these membership functions.

– Fuzzy rules: The fuzzy rules describe the relationship

between the inputs and outputs of the FIS. Workload

(arrival rate), Response time and Control error are the

inputs, whereas the output is Controller. Every elastic-

ity decision consists of two ingredients, i.e. the scaling

actions and magnitude. The magnitude depends on the

selected controller, whereas the scaling actions can be

determined by the value of Control error. There are

three possible actions, i.e. no scaling, scale up and scale

Fig. 1 Resource provisioning

framework using multi-

controller with fuzzy switching

Table 1 Ranges for fuzzy variables

Fuzzy variable Set member Range

Workload (arrival rate) Low 0 to 48.9

Medium 30.7 to 67.94

High 56.41 to 100

Response time Instantaneous 0 to 7.2

Medium 6.1 to 20

Low 18.2 to 100

Control error Negative -5 to -100

Normal -10 to ?10

Positive ?5 to ?100
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down. A positive Control error means scale down,

negative means scale up, and normal means no scaling.

Therefore, we have only rules where ControlError is

either Positive or Negative. The following is one of the

switching rules. In this case a scale down operation is

performed using Lazy controller.

Similarly, the following rule specifies a scale up

operation using an Aggressive controller:

At each iteration, the overall process works as follows.

1. The FIS obtains input values from the system

monitoring component.

2. The input values are then fuzzified through the

defined membership functions.

3. The FIS then evaluates the rules and identifies the

output, i.e. Controller.

4. The Switch component then only activates the

output of selected controller.

5. The elastic application then adds/removes virtual

machines to/from the existing cluster based on the

decision of the selected controller.

Basal Ganglia-Inspired Cloud Resource
Provisioning

The experimentation results obtained from our previous

framework demonstrate that it has higher potential to

improve system performance in comparison with a typical

single feedback controller approach of elasticity. However,

Fig. 2 Membership functions. a Workload (arrival rate). b Response time. c Control error. d Controller

IF arrivalRate IS high
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Possible values : high; middle or low

AND responseTime IS instantaneous
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Possible values : instantaneous; medium or low

AND error IS positive
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Possible values : Positive; Negative or Normal

THEN controller IS lazy
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Possible values : Aggressive; Moderate or Lazy

IF arrivalRate IS high AND responseTime IS slow

AND error IS negative THEN controller IS aggressive

996 Cogn Comput (2016) 8:992–1005
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the framework is based on the hard switching mechanism,

where the control methodology selects the best controller at

each iteration. Such a control methodology is subject to an

undesirable phenomenon called bumpy transition occurred

when the switching among various operating regions. This

phenomenon causes oscillation [15, 16] that leads the

system to an unstable state, where cloud resources can be

acquired/released in a periodic way. The oscillation of

resources may have deteriorating effects on system per-

formance and running cost. It is therefore desirable to

improve the framework with the possibility of smoother

transition to avoid any oscillatory behaviour. Soft switch-

ing is an alternative approach used to avoid such undesired

behaviour. In contrast to hard switching, the soft switching

approach has the advantages of (1) avoiding the singularity

and sensitivity problems, (2) improvement of robustness

and stability aspects and (3) elimination of chattering

issues [51].

Considering the advantages of soft switching approach,

this research proposed a novel bioinspired soft switching

approach for cloud resource provisioning problem. The

new approach integrates a BG-based computational model

[21, 22] into our previous approach described in ‘‘Multi-

controller-Based Cloud Resource Provisioning’’ sec-

tion. The novelty of this work is at the system level as it

combines various established methods including feedback

controllers, fuzzy logic and BG-based action selection

mechanism in a novel way in order to exhibit their inte-

grated effectiveness in a new problem domain, whereas

the key aim of the BG integration is to demonstrate the

effectiveness of the bioinspired action selection mecha-

nism to the underlying cloud resource provisioning

problem. The BG-based computational model has the

advantages of both biological plausibility and computa-

tional efficiency [23].

Our inspiration of exploiting BG-based approach comes

from the research work carried out in the field of autono-

mous vehicle control (AVC) such as motion control of

autonomous vehicle [23] and cognitive cruise control sys-

tem [18]. In both approaches, the authors followed a

modular approach by designing a set of controllers, where

each controller can be optimized for a particular operating

region or performance objective to achieve the overall

control objective by switching the suitable set of con-

trollers at right time. Both of the approaches utilized the

computational model of action selection proposed in [21,

22].

Figure 3 presents the extended architecture of our pre-

vious work [14] presented in Fig. 1. The extensions, as can

be seen from figure, include (1) a modified version of the

fuzzy logic component, (2) an integration of the new basal

ganglia component and (3) a derivation of the final output.

Each of these extensions is further explained in the fol-

lowing sections.

Fuzzy Logic

The integration of BG-based computational model as an

action selection mechanism requires salience signals as

inputs. Thus, the first challenging issue that has to be dealt

with is the generation of salience signals by making use of

system internal state, various performance metrics and/or

available sensory information [23].

In our previous work described earlier in this paper, we

developed a FIS, which used as a switching mechanism. In

this work, we extend the existing FIS to generate the sal-

ience signals required to provide as inputs to the BG-based

component. Thus, the switching mechanism of the previous

work in its extended form becomes a fuzzy logic-based

salience generation model. The inputs to this model remain

Fig. 3 Resource provisioning

framework using BG-based

approach
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the same, i.e. Workload, ResponseTime and ControlError,

whereas the output is changed from one output (Controller)

to three outputs. The outputs are salience strengths for each

controller and can be read as LazySalience, Moder-

ateSalience and AggressiveSalience. The following exten-

sion has been introduced to this part of the work:

– Membership function: As the inputs to model do not

change, the corresponding membership functions

remain the same as well. However, the output is

changed. Therefore, the Controller membership func-

tion is replaced with three new functions (i.e. one for

each newly introduced output), which are the same and

of basic triangular type as can be seen in Fig. 4. All the

membership functions used in our approach are either

triangular or trapezoid because they have the advantage

of being simple and efficient in comparison with others

[52].

– Fuzzy rules/salience generation: The fuzzy rules are

responsible to generate the salience signals that deter-

mine the strength of each controller. The fuzzy rules

are now changed as previously every rule selects only

one output, whereas now each rule has to determine the

salience strength value for each controller. Thus the

new rules look like the following,

The possible value for each salience is weak, average

and strong. There are 12 rules in total in the above

format. The action surface of fuzzy salience generation

model can be seen from Fig. 5.

Basal Ganglia

The BG component integrates the BG-based computational

model [21, 22] of action selection described briefly earlier in

this paper. The BG component accepts three salience signals

(i.e.LazySalience,ModerateSalience andAggressiveSalience)

as the inputs, which are obtained from the output of fuzzy logic

component as can be seen from Fig. 3. These signals are then

provided to theBG-basedcomponent to produce gating signals

that determine the proportion of each action.

Derivation of the Final Output

The final output, i.e. ut?1, is derived using the gating sig-

nals and the corresponding output of each controller as

follows:

utþ1 ¼
u

L

tþ1
� g

L

� �

þ u
M

tþ1
� g

M

� �

þ u
A

tþ1
� g

A

� �

g
ð3Þ

The ut?1 represents the new final number of virtual

machines, where uLtþ1, u
M
tþ1 and uAtþ1 represents the output

(new number of virtual machines) according to the

individual controllers, i.e. Lazy, Moderate and Aggres-

sive, respectively. Similarly, the gL, gM and gA are the

gating signals that represents the proportion of each

controller, i.e. Lazy, Moderate and Aggressive, respe-

cively, where the denominator g represents the count of

gating signals, when their value is higher than zero as it is

not always the case that more than one controller/action

has to be selected at every time. This approach provides

the calculation of the final output in a more naturally

bioinspired way, where it could provide the possibility to

perform a smoother transition between various switching

decisions.

Experimentation and Evaluation

Experimental Set-up

We have extended CloudSim [53], a well-known simulator

for cloud computing to implement a prototype of the pro-

posed framework. JFuzzylogic [54] is also utilized to

implement the fuzzy logic component. We have used two

real workload traces to evaluate the performance of the

proposed framework in comparison with the existing

approaches. Figure 6a represents the http requests made to

1998 world cup between 03/07/1998 08:01 and 04/07/1998

07:59. These data are obtained from [55]. Figure 6b rep-

resents the http requests made to NASA website between

06/08/1995 00:01 and 07/08/1995 23:59 and is obtained

from [56].

IF arrivalRate IS high AND responseTime IS instantaneous

AND error IS positive THEN ðlazySalience IS strongÞ;
ðmoderateSalience IS averageÞ; ðaggressiveSalience IS weakÞ

998 Cogn Comput (2016) 8:992–1005
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In CloudSim, we set up a data centre in which the

physical machines host virtual machines. The proposed

framework manages a pool of virtual machines on behalf of

web application. The CloudSim receives every http request

of a workload as a job with a pre-defined length in a

specific unit that determines the service time of that job.

For this experimentation, we randomly assign service time

to each job between 10 and 500 ms based on the notion that

some http requests are more time-consuming than others

such as mixed read/write operations. The arrival time of

each job is obtained from real-time arrival of the http

request in workload.

The various gain parameters of the controllers are

obtained offline using an experimental trial and error

method. These are obtained by generating various synthetic

random workloads based on a specific workload category,

such as for Lazy gain where the workloads with low arrival

rate are utilized. Different experiments are then performed

using these random synthetic workloads with various gain

values. The gain with best results, i.e. with the low number
Fig. 4 Lazy/Moderate/Aggressive Salience

Fig. 5 Action surface. a LazySalience with positive control error. b LazySalience with negative control error. c ModerateSalience with positive

control error. d ModerateSalience with negative control error. e AggressiveSalience with positive control error. f AggressiveSalience with

negative control error

Cogn Comput (2016) 8:992–1005 999
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of SLO violation and small running time, is selected from

each category for the final experimentation. The gain

parameters used for the final experimentation can be seen

from Table 2.

Evaluation Criteria

The evaluation of the proposed methodology is carried out

in comparison with the related cloud resource provisioning

techniques. This includes the conventional single model-

based feedback controllers, our previously proposed multi-

controller-based approach and Rightscale [31]. Rightscale

is a well-known commercial elasticity mechanism devel-

oped using the threshold-based rules technique. Note that,

we have not compared our selection of BG-based compu-

tational model [21, 22] as an action selection mechanism

with other related approaches. This is because our aim is

not to compare the performance of various action selection

mechanisms but to demonstrate the effectiveness of a

bioinspired method in comparison with other state-of-the-

art cloud resource provisioning techniques. The evaluation

criteria are comprised of the following:

– SLO violation: SLO stands for service level objectives,

which is a measurable unit of service level agreement

(SLA). SLA defines an agreement between the provider

and consumer of a service. An SLO violation in our

case is referred to the phenomenon, where a job request

cannot complete its execution within a desired response

time (1 s for experimentation). The SLO violations can

be treated as performance objective, where it is

expected that each job must complete its execution

within 1 s. This can be achieved, if the system

maintains an average CPU utilization of 55 %. The

relation between 55 % average CPU utilization and 1-s

response time is obtained through offline standard

system identification experiments.

– Cost: The total running time of all virtual machines is

recorded throughout the experiment. It includes the

time when any virtual machine starts to the time it

finishes execution either as a result of scale down

operation or when the experiment finishes. The total

time is calculated in minutes, and partial hours are not

considered as full hours. Moreover, an immediate start/

stop of the virtual machine is considered to avoid any

complexity in the implementation as well as to have a

precise comparison of virtual machine running time

because the experiments run for short time. The total

running time of all virtual machines is then converted

to hours for final calculation of hours. A rate of 0.013$

per hour is applied to calculate the final cost based on

the ’’t2.micro’’ machine pricing model of Amazon [57].

Apart from the above-mentioned criteria, we also compare

the results of the average CPU utilization over the entire

period of experiment for our previous work and the BG-

based approach. In this regard, we record the measured

CPU utilization for the entire experiment, where each

measurement represents the average CPU utilization of all

virtual machines in the last minute. These results shed light

on the stability perspective of the system with respect to the

BG usage.

Results

Figure 7 presents the aggregated results for both the

experiments, i.e. using the NASA and Worldcup workload

traces. The Lazy, Moderate and Aggressive represent the

Table 2 Integral gains used for

experiments
Controller Gain

Lazy -0.06

Moderate -0.7

Aggressive -1.1
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typical single controller approaches, where each controller

is designed to perform better in their respective regions

when the workload is low, medium and high, respectively.

The RS represents Rightscale, MC represents our previous

approach described in ‘‘Multi-controller-Based Cloud

Resource Provisioning’’ section, and BG represents the

proposed work in this paper.

Considering the NASA workload example, it can be seen

from Fig. 7b that overall, all approaches performed well in

terms of performance except Aggressive approach. If we

compare the percentile results of the SLO violation, the

MC approach has the same number of the violation as that

of RS (i.e. 0.21 %), where the BG has comparatively less

number of the SLO violation than all other approaches (i.e.

0.05 %). In terms of the cost, there is not much difference

in all approaches except RS. This means that RS has

achieved better performance in this case but at a higher

cost.

In case of the Worldcup workload example, it can be

seen from Fig. 7d that only MC and BG approach per-

formed well in terms of achieving the better performance

with less number of SLO violations (i.e. 0.56 and 0.29 %,

respectively). Moreover, they have achieved the better

performance at less cost than all the other approaches.

The key objective of any elasticity mechanism is to

improve the performance of the underlying system by

reducing the number of SLO violation to zero at a lowest

cost possible. In both of the experiments, our proposed

approaches (i.e. MC and BG) performed better in perfor-

mance as well as in cost. However, other approaches like

RS also showed a good result in terms of performance in

the first case, but at a higher cost. Moreover, the NASA

workload is comparatively less dynamic than Worldcup in

terms of jumps in varying workload regions. Comparing

the results of MC and BG, we can observe that the BG

shows a higher potential to achieve better performance

with a bit higher but almost negligible cost than MC.

The above results demonstrate that adapting the BG-

based action selection mechanism improves the overall

results. However, another key aspect of adapting the BG-

based approach is its ability of selecting the actions in a

natural, bioinspired way, where it can improve the possi-

bility of a smoother transition between different decisions.
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In current experimentation, we do not provide compre-

hensive quantitative measurements about how the BG-

based approach improves the stability perspective of the

underlying application. However, the results in Figs. 8 and

9 demonstrate some differences between MC and BG

approaches with respect to the average CPU utilization

recorded over the entire period of the NASA workload

experiment that characterize the stability of system.

Note that the key objective of the control methodology

is to maintain the CPU utilization close to the desired/

reference point, i.e. 55 % but under this range. The CPU

utilization above the reference point means that the per-

formance of the system degrades. Figure 8 aggregates the

count of the minutes for both approaches, when the CPU

utilization is below and above the reference point. As can

be seen from Fig. 8, it aggregates the count of the minutes

for both approaches, when the CPU utilization is below and

above the reference point. As can be seen from Fig. 8,

during the total period of 2830 min, the BG approach

maintains much longer time (i.e. 1892 min to be exact) for

the CPU utilization to stay below 55 % in comparison with

MC (which is 1354 min). This demonstrates that overall

the BG approach maintained the CPU utilization closer

under the reference point.

We further divide the measured CPU utilization for each

approach into 24 h, which is presented in Fig. 9. This helps

to visually demonstrate the difference between the

approaches with respect to the measured CPU utilization

against the reference point. The first and third rows belong

to the MC approach, whereas the second and fourth rows
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belong to the BG approach. The reference CPU utilization

is represented with a dark solid horizontal line in all

graphs. The following points are observed with respect to

the differences between two approaches.

– The overall average CPU utilization for the BG-based

approach is recorded as 52.58 %, whereas for the MC

approach it is 56 %. They can be seen in red colour

dashed lines in their respective graphs. Moreover, the

BG reduces the likelihood of leading the system into an

overloaded status as some of such occurrences can be

found in the case of MC approach, e.g. the sessions

08th to 12th hour, and 20th to 24th hour.

– The CPU utilization in the BG case never reaches to

70 % in the entire period of the experiment except at

the start, which is the same for both cases, whereas in

the case of MC, it has been crossed a number of times.

– The CPU utilization in the BG case almost remains

lower than 65 % except only four times. In the case of

MC, there are quite a few times, where it remains more

than 65 % for some time such as the peaks in the 08th

to 12th hour, 24th to 28th hour and 28th to 32th hour.

– Overall, the CPU utilization in the case ofMC has more

abrupt transitions and peaks in comparison with the BG

approach, which can cause the oscillatory behaviour.

In light of the above discussion, we can argue that the BG

approach has the potential to reduce the likelihood of SLO

violation by maintaining a desired CPU utilization, thus

resulting in a better system performance. Moreover, com-

pared with the MC approach, it shows smoother transitions

between switching decision, which can reduce and/or avoid

unwanted system oscillatory behaviour and will improve

stability. Note that the work reported here is part of the

preliminary study, and thus we have not carried out a further

theoretical stability analysis. However, an intuitive expla-

nation is that themixture of all controllers is done [in Eq. (3)]

in a bioinspired way augmented by the BG process, which

facilitates a natural selection of actions that results in less

‘‘bumping’’ at the switching time [58]. Moreover, the com-

putational model of [21, 22] in particular is proved to suc-

cessfully avoid the oscillation and keep the energy efficiency

in various action selection problems [17]. In future,we aim to

use the enhanced version of the BGmodel developed in [17],

for which the formal stability proof can be established using

the contraction theory of dynamical systems.

Conclusion and Future Work

We address the problem of cloud resource provisioning as

an action selection problem. We propose a biologically

inspired soft switching approach to implement horizontal

cloud elasticity. The proposed approach integrates a func-

tional model of basal ganglia (BG), which augments the

methodology to select the right set of controllers in a nat-

ural biologically plausible way, thus reducing the likeli-

hood of oscillation and increasing the stability of

underlying system. Moreover, a fuzzy inference system is

introduced to generate the salience signals required to

provide as inputs to BG model. We evaluate the proposed

methodology by comparing with existing elasticity meth-

ods using CloudSim and two real workloads. The initial

experimental results demonstrate that biological inspired

method performs better in both evaluation aspects (i.e.

performance and cost) than other approaches. Moreover, it

also reduces the oscillation peaks in the measured CPU

utilization observed in our previously proposed approach,

thus having the potential to increase the stability of

underlying system.

The work is still in its early stage, where we show the

suitability of the biologically inspired method of action

selection in the context of cloud computing. Our future

work will address the key challenging issues related to the

developed framework, which include the following: (1) a

detailed theoretical convergence and stability analysis to

formally evaluate the proposed approach against other

state-of-the-art approaches, (2) enhancement of fuzzy part

using genetic algorithm to obtain optimal settings of fuzzy

variable ranges, membership functions and fuzzy rules, (3)

online learning capabilities of switching rules and (4) the

possibility to enhance the capability of the framework by

incorporating the vertical elasticity will be explored.
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