
Design and evaluation of a biologically-inspired cloud elasticity
framework

Amjad Ullah1 • Jingpeng Li2 • Amir Hussain3

Received: 29 January 2019 / Revised: 6 November 2019 / Accepted: 14 February 2020 / Published online: 28 February 2020
� The Author(s) 2020

Abstract
The elasticity in cloud is essential to the effective management of computational resources as it enables readjustment at

runtime to meet application demands. Over the years, researchers and practitioners have proposed many auto-scaling

solutions using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control

theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of

implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. The existing

methods suffer from issues like: (1) the lack of adaptability and static scaling behaviour whilst considering completely

fixed approaches; (2) the burden of additional computational overhead, the inability to cope with the sudden changes in the

workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic

approaches; and (3) the lack of considering uncertainty aspects while designing auto-scaling solutions. In this paper, we

aim to address these issues using a holistic biologically-inspired feedback switch controller. This method utilises multiple

controllers and a switching mechanism, implemented using fuzzy system, that realises the selection of suitable controller at

runtime. The fuzzy system also facilitates the design of qualitative elasticity rules. Furthermore, to improve the possibility

of avoiding the oscillatory behaviour (a problem commonly associated with switch methodologies), this paper integrates a

biologically-inspired computational model of action selection. Lastly, we identify seven different kinds of real workload

patterns and utilise them to evaluate the performance of the proposed method against the state-of-the-art approaches. The

obtained computational results demonstrate that the proposed method results in achieving better performance without

incurring any additional cost in comparison to the state-of-the-art approaches.

Keywords Cloud elasticity � Dynamic resource provisioning � Fuzzy control system � Basal ganglia � Auto-scaling �
Switched controller � Elastic feedback controller

1 Introduction

The pool of virtually unlimited on-demand computational

resources, provided by cloud providers (CPs), and many

attractive features of cloud computing, such as pay-as-you-

go pricing and on-the-fly re-adjustment of hired computa-

tional resources (elasticity), is a perfect match to host web

applications that are subject to fluctuating workload con-

ditions [1, 2]. The cloud’s elasticity allows applications to

dynamically adjust the underlying computational resources

in response to the changes observed in the environment,

thus enabling application service providers (SPs) to meet

application demands and pay only for the resources that are

necessary [3].

& Amjad Ullah

a.ullah@westminster.ac.uk

Jingpeng Li

jli@cs.stir.ac.uk

Amir Hussain

a.hussain@napier.ac.uk

1 Department of Computer Science, University of Westminster,

London, UK

2 Division of Computing Science and Mathematics, University

of Stirling, Stirling, UK

3 School of Computing, Edinburgh Napier University,

Edinburgh, UK

123

Cluster Computing (2020) 23:3095–3117
https://doi.org/10.1007/s10586-020-03073-7(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03073-7&domain=pdf
https://doi.org/10.1007/s10586-020-03073-7

Over the years, researchers and practitioners have pro-

posed many elastic methods using versatile techniques

including but not limited to rule-based [4–8], control theory

[9–13], fuzzy logic [14, 15], optimisation [16–18] and

machine learning [19, 20]. However, despite a large range

of existing elasticity research work, the aim of imple-

menting an efficient scaling technique that satisfies the

actual demands is still a challenge to achieve [21–23]. This

is evident from the low utilisation, estimated as 8% to 20%,

of the server capacity purchased by the SPs [24].

The existing research literature on cloud elasticity dif-

fers in various aspects, e.g. triggering behaviour (Reactive/

Predictive/Hybrid), scope (CPs/SPs perspective), depen-

dency on metrics (CPU utilisation/Response time, etc.),

and the implementation technique (Control Theory/

Machine learning/Rule-based, etc.). Despite such differ-

ences most of the existing methods can generally be

grouped into Fixed or Adaptive categories based on their

design and working mechanism to analyse their pros and

cons as a whole [25].

The Fixed class refers to the family of all elastic

methods that are designed off-line and remain fixed at

runtime. On the other hand, the Adaptive class indicates

methods that are equipped with an on-line learning capa-

bility that is responsible for adaptation at runtime in

response to changes in the working environment. The

Fixed approaches are simple, easy to design and better for

systems with uniform workload behaviour, e.g. rule-based

systems and fixed gain elastic feedback controllers. How-

ever, the performance severely affects systems with vari-

able workloads due to lack of adaptability at runtime. In

contrast, the Adaptive approaches are more flexible due to

on-line learning capabilities and they perform better in

scenarios with slowly varying workload behaviour. How-

ever, they are also criticised for their additional computa-

tional cost caused due to the online learning [26], long

training delays, their associated risk of reducing the quality

assurance of the resulted system and the impossibility of

deriving a convergence or stability proof [25].

In contrast to the families mentioned above, this paper

advocates a fixed-adaptive (also referred to as Hybrid by

Gambi et al. [25]) approach, a method commonly associ-

ated with the biologically-inspired multi-model switching

and tuning (MMST) methods. Using such an approach, an

elastic method follows a Fixed design principle, but also

achieves certain level of adaptive behaviour at runtime.

The review of existing state-of-the-art elasticity research

(Section 6) indicates that such an approach for imple-

menting cloud elasticity has not received much attention.

Another important factor identified in the existing

elasticity literature is the importance of addressing the

uncertainty related issues, e.g. impreciseness in domain

knowledge and noise in monitoring data. Jamshidi et al

[14, 27] and Farokhi et al [28] stressed the importance of

the uncertainty aspects required to be considered while

designing elastic controllers. However, despite the impor-

tance, the implementation of uncertainty in the context of

cloud elasticity has not yet been well received [28]. The

methodology proposed in this paper is also a step forward

in this direction.

This paper addresses the horizontal elasticity problem

from a SP perspective and particularly focuses on con-

tributing towards resolving the following issues in the

existing elasticity literature: (1) The lack of adaptability

and static scaling behaviour whilst considering completely

fixed approaches; (2) The burden of additional computa-

tional overhead, the inability to cope with sudden changes

in workload behaviour and preference of adaptability over

reliability at runtime whilst considering the fully dynamic

approaches; (3) The lack of considering uncertainty aspects

while designing auto-scaling solutions; and (4) Lastly, the

unavailability of solutions that facilitate qualitative elas-

ticity rules to resolve the quantitative nature of the com-

monly used rule-based approaches. This paper investigates

the synergy between the biologically-inspired multi-con-

troller approach and fuzzy control system, to provide a

holistic solution to address the aforementioned issues.

The rest of the paper is organised as follows. The next

section provides the design of our proposed biologically-

inspired cloud elasticity framework. The design, however

consists of two different modes, termed as Hard switching

and Soft switching. Therefore, each mode is explained in

different section. Section 3 elaborate the customised set-

tings used for experimentation and the results obtained in

the case of Hard switching approach. Similarly, Sect. 5

presents the results obtained in the case of Soft switching

approach. Section 6 comparatively summarizes the

research undertaken in the field of cloud elasticity research.

Lastly, Sect. 7 concludes this paper.

2 Biologically-inspired elasticity framework:
hard switching

The proposed multi-controller with fuzzy switching

framework consists of the use of an array of controllers,

where each controller is particularly designed to achieve

better performance in a different situation and the selection

of a suitable controller is realised at runtime. The archi-

tectural diagram of the proposed control methodology can

be seen in Fig. 1 which extends and builds on the classical

feedback loop model.

The key idea behind the proposed framework is to

divide the complexity of the overall system by constructing

multiple fixed gain controllers, where each controller

3096 Cluster Computing (2020) 23:3095–3117

123

depicts a separate elastic policy that carries out scaling

actions at different intensity level. The design of the pro-

posed methodology (or any switched method in general)

involves the following two key challenges: (1) how to

partition the system among multiple controllers? (2) How

to switch (or formulate) the final decision? Due to the lack

of a standard approach for partitioning the system among

sub controllers [29], this research realises the use of expert-

oriented distribution of workload intensity into various

categories such as low, moderate and high. For each cat-

egory, a system model is constructed, based on which a

controller is designed. The final decision is carried out by

the selection of a suitable controller at runtime using an

intelligent switching mechanism, implemented as a fuzzy

control system, i.e. also formally called as Fuzzy Inference

System (FIS) as represented in Fig. 1.

The proposed control method is responsible for the

readjustment of the number of Virtual Machines (VMs) to

maintain the average CPU utilisation of hired VMs running

at that time. The proposed methodology incorporates three

Fixed gain controllers termed Lazy, Moderate and Ag-

gressive. In theory, the number of controllers depends on

the adaptation and application scenario. Increasing the

number of controllers facilitates more fine-grained control

over cloud resources, however, it also increases the design

complexity of the elastic method. Each controller depicts a

different elasticity policy, and theoretically they can be

implemented using any suitable technique.

The incorporation of fixed controllers with switching

ability enables the adaptive behaviour of the system to

respond appropriately to the needs of the system in case of

changes in workload without the need of any on-line

learning algorithm. Each of the controllers is designed to

react differently in the various situation. In this case, as

their name specifies, they indicate three different scenarios,

i.e. to perform scaling action at slower, moderate and

aggressive intensity level. The selection of one of this

policy depends on the behaviour of the system at that point

in time. The behaviour of the system can be identified

using the latest status of the following three aspects

including application performance, workload arrivals, and

resource utilisation. These aspects are represented as Re-

sponse time, Arrival rate and Control error respectively in

Fig. 1.

The System Monitor component of the proposed

methodology is responsible for obtaining the latest status of

the three parameters mentioned above. These measure-

ments (as shown in Fig. 1) are provided to the FIS. The FIS

then decides using the collection of elastic fuzzy rules

(Sect. 2.2), what level of intensity is needed for the read-

justment of resources (VMs) to meet the desired perfor-

mance objective (explained in Sect. 2.2.2). The output of

the FIS is one of the employed controller that is responsible

for making scaling decisions.

2.1 Feedback control

The design and development of the feedback control part of

the methodology follows the process flow proposed by

Antonio et al. [30]. This process flow consists of the fol-

lowing steps: Defining the goal of control methodology,

Identification of control input and devising of system’s

model and finally, the development, deployment and

evaluation of the control methodology. The details of the

control system goal, control input, system model and

control design in the prospect of our proposed methodology

are provided in the following subsections. Whereas, the

deployment and evaluation are discussed in Sect. 3.

2.1.1 Goal of control methodology

The goal of the control methodology is to adjust the

number of VMs (will also be referred as Cluster size in the

rest of the paper) at runtime in response to changes in

Lazy

Target
system

VM VM

Elastic action

Moderate

Aggressive

Fuzzy Inference
System (FIS)

Switch

Measured CPU
utilisation ()VMs (u)

Control
error (e)

Reference CPU
utilisation ()

System Monitor
Arrival Rate

Response Time

Fig. 1 Hard switching

framework

Cluster Computing (2020) 23:3095–3117 3097

123

workload to maintain the CPU utilisation of all VMs at a

desire reference value. The use of CPU Utilisation is

considered here assuming that the performance of the

underlying test scenario is influence by CPU utilisation

only. In scenarios, where application performance relies on

other metrics (e.g. memory consumption, etc), the CPU

Utilisation should be replace accordingly.

In the context of control system, based on the above-

mentioned goal description, CPU utilisation becomes the

Measured output of the system and we have to identify the

Reference input, i.e. the target CPU utilisation that results

in achieving the desired performance level. For any given

application scenario, the desired performance level is the

acceptable level of performance, i.e. the mean response

time (mRT), that the application owner desire to maintain

for their application. In this paper, for the evaluation of the

proposed method, we consider the value (mRT B 0.6 s) as

the desired performance measurement. Hence, the scaling

mechanism will make changes to the system resources such

that the performance of the application acheive the mRT B

0.6 s. However, response time is an application level

metric. Therefore, we need to identify the corresponding

CPU utilisation level, where the system will be able to

maintain the application mRT B 0.6 s.

The key reasons for using CPU utilisation as the system

output are the following: (1) The CPU utilisation is directly

obtained from the CPs provided monitoring Application

Programming Interface (API). Hence it does not require

application level monitoring efforts. (2) It is a system

specific metric and no runtime relation identification

between application metric, e.g. Response time, is required.

Hence it does not involve additional overhead at runtime.

(3) More importantly with respect to our methodology, we

have already catered application level metric (i.e. Response

time) for decision-making. Thus using CPU utilisation as

another metric strengthens the decision-making mechanism

by taking into account the system’s resource utilisation

perspective. Hence, the proposed methodology becomes

hybrid in contrast to most of the existing methods that

either rely on application [14, 31] or system level metrics

[11, 32, 33].

The measurement for Reference CPU utilisation can be

obtained using system identification (SID) experiments by

establishing a relationship between VM CPU utilisation

versus performance. This experiment and all other such

SID experiments are conducted using an extended version

of a well-known cloud simulation tool named CloudSim

[34].

The SID experiment records the measurement of CPU

utilisation and mRT against several workloads that differ-

entiate regarding the number of incoming requests ranging

from 50 requests per minute (rpm) to 950 rpm. Each

measurement of CPU utilisation and mRT against the

specified rpm is obtained from sub experiment, where the

corresponding number of rpm are sent for 30 minutes to the

system, which consists of one VM. The arrival time of job

requests in a minute and the service time of each request is

randomly assigned. This whole experiment is repeated 100

times and the average for each measurement is recorded.

The obtained results are presented in Fig. 2.

It is evident from Fig. 2 that the increase in the number

of rpm makes the mRT slower. The dashed line in Fig. 2

represents the desired performance measurement, and we

are interested in the maximum rpm measurement for which

the obtained performance is less than the desired target, i.e.

(mRT B 0.6 s). This criterion is satisfied by 850 rpm.

However, in this case, there were 13% Service Level

Objective (SLO) violations observed, which is not

acceptable as per the employed performance objective (will

explain in Sect. 2.2.2). Therefore, we do not select the 850

rpm and consider the next measurement, i.e. 800 rpm, that

satisfies the criterion mentioned earlier. This means that on

average one VM can fulfil maximum 800 rpm on a per

minute basis, while obtaining the desired performance

level. Analogously, the number of rpm has similar effect on

CPU utilisation, i.e. the increase in rpm results in an

increase in the CPU utilisation as well. For the Reference

input, we record the corresponding measurement of CPU

utilisation from Fig. 2 against the 800 rpm, which is 55%.

Thus the control methodology is responsible to maintain

the measurement of 55% as the Reference CPU utilisation.

2.1.2 Control input

The number of VMs is used as the Control input. This

choice is obvious considering horizontal elasticity. Fur-

thermore, we also perform an experiment to demonstrate

the impact on mRT with a change in Cluster size. Figure 3

demonstrates the obtained results that indicate that

increasing the number of VMs reduced the response time.

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900

Number of Requests (Per Minute)

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

C
P

U
 utilisation (%

)

cpu rt

Fig. 2 VM performance

3098 Cluster Computing (2020) 23:3095–3117

123

2.1.3 System modelling

This section identifies the system model that describes the

relationship between input (number of VMs) and output

(CPU utilisation) of the system. We follow the black box

modelling approach that mainly consists of SID experi-

ments to obtain training data, building and evaluating the

model. The following subsections explain the process.

SID experiments design The SID experiments record the

training data consisting of input-output pairs of system by

changing the control input in a systematic way during the

experiment. During this experiment, we assume that the

historical information related to system workload is avail-

able and on that basis, we use domain experts based dis-

tribution of workload into three categories namely Low,

Moderate and High. Using these categories and following

the principles of Gain scheduling technique where work-

load-specific models are developed [35]. We conduct three

workload category specific experiments. During each

experiment, the value of control input is changed as per the

discrete Sine wave equation given below:

yðtÞ ¼ mþ A � sinðtÞ ð1Þ

The m in above equation represents mean, A represents

amplitude and t represent time step. The time period for

each experiment is 540 min long. The difference between

each experiment is the use of different pair of (mean,

amplitude) values and the use of different workload. The

coverage of the input values generated using Eq. 1 during

the experiments can be seen from Fig. 4a–c and the cor-

responding system output recorded in response can be seen

from Fig. 4d–f respectively. In the case of system output,

the vibrations in the measurement occur as a result that the

majority of requests were cancelled because they were

unable to complete their execution at a predefined maxi-

mum time (2 s).

System model and evaluation The Autoregressive

Exogenous Model (ARX) approach is employed to

describe the relationship between the number of VMs and

CPU utilisation. The following equation represents the

general form of an ARX equation.

yðk þ 1Þ ¼ a1yðkÞ þ � � � þ anyðk � nþ 1Þþ
b1uðkÞ þ � � � þ bmuðk � mþ 1Þ

ð2Þ

The above equation represents a single input, single output

system. The u and y represent the input and output of the

system respectively. According to this equation, the output

in next time unit (k þ 1) depends on the n number of

previous output values and the m number of previous input

values. The ak and bk are the constant coefficients values

for each output and input value, whereas the m and n

represent the order of the model. We use a 1st order ARX

model of the following form that can be derived from Eq. 2

by setting m ¼ n ¼ 1.

yðk þ 1Þ ¼ ayðkÞ þ buðkÞ ð3Þ

The 1st order model, in contrast to m and n order model,

relies on the input and output from the previous time unit

only. The key reason of selecting the 1st order model is its

simplistic nature and the ability to avoid over-fitting [35].

We have to find values for parameter a and b of the above

equation from the training data obtained from the SID

experimentation. For this purpose, we employ the com-

monly used least square regression method to estimate the

model parameters for all the three experiments mentioned

in the previous sections, and the outcome is in the fol-

lowing equations:

yðk þ 1Þ ¼ 0:89yðkÞ � 0:18uðkÞ ð4aÞ

yðk þ 1Þ ¼ 0:93yðkÞ � 0:07uðkÞ ð4bÞ

yðk þ 1Þ ¼ 0:95yðkÞ � 0:03uðkÞ ð4cÞ

These models after validation can be used to design

controllers and the following two approaches are normally

followed. Firstly, each model could be used to design a

different controller as it is obtained based on the average

rate of each workload category and thus can be treated as

workload-specific models. Secondly, one model could be

used to design different controllers where each differs from

others based on the controller properties. We follow the

second approach and use the model of Eq. 4a for controller

design (explain in Sect. 2.1.4).

The next step is to evaluate the model to quantify its

accuracy. For this purpose, we employ a widely used

method known as the coefficient of determination (denoted

by R2). The value of R2 can be calculated using the fol-

lowing equation:

R2 ¼ 1� varðy� ŷÞ
varðyÞ ð5Þ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7
Cluster Size

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

Fig. 3 mRT vs cluster size with constant workload (2800 rpm)

Cluster Computing (2020) 23:3095–3117 3099

123

The y in above equation represents the actual system output

value, where ŷ indicates the predicted value computed by

the model. The R2 value indicates the quality of the model,

where a value � 0:8 is considered as an acceptable range

[35]. In our case, the value of R2 is 0.96, which indicates a

good fit. However, according to Hellerstein et al. [35], a

larger value of R2 can also be misleading in cases where

data points are grouped together around extreme values.

Therefore, to confirm the accuracy of the model, residual

analysis plots are often recommended. Such a plot, in the

context of our model, can be seen in Fig. 5 where the actual

values of the output signal are plotted against the predicted

values. It is evident from this plot that apart from few

points, all other points are grouped around the diagonal

line, which indicates better accuracy of the model.

2.1.4 Controller design

The goal of the controller design step is to select the

control law and any required parameters for the Controller

component of the feedback control methodology. The

control law determines the structure of Controller com-

ponent and describes how it will operates [36]. In this

paper, we adopt the Integral control law for each of the

three employed controllers, i.e. Lazy, Moderate, and Ag-

gressive. The key reasons behind this selection is its sim-

plistic nature and its extensive use for similar problems,

e.g. [9, 37–40].

The integral law can be defined using the following

equation:

uðtÞ ¼ uðt � 1Þ þ KieðtÞ ð6Þ

u(t) represents the new value for control input in time t, e(t)

is the control error that represents the difference between

the desired and measured output, i.e. eðtÞ ¼ yref � yt, and

Ki is referred to the integral gain parameter. In this paper,

the number of VMs is the control input, whereas CPU

utilisation is the measured output. The control error rep-

resents the difference between the desired CPU utilisation

(i.e. 55%) and the measured CPU utilisation.

The integral gain parameter indicates the aggressiveness

of the controller that determines how fast the system will

respond. The higher this value, the faster the system will

react. However, careful attention is required while deciding

the gain of the controller as higher value of the gain

parameter could cause oscillation and may lead the system

to instability. All the three employed controllers adopt the

0

20

40

60

80

0 60 120 180 240 300 360 420 480 540
Time (Minute)

C
lu

st
er

 S
iz

e

(a) Control input (Cluster size)

0

20

40

60

80

0 60 120 180 240 300 360 420 480 540
Time (Minute)

C
lu

st
er

 S
iz

e

(b) Control input (Cluster size)

0

20

40

60

80

0 60 120 180 240 300 360 420 480 540
Time (Minute)

C
lu

st
er

 S
iz

e

(c) Control input (Cluster size)

30

40

50

60

70

80

0 60 120 180 240 300 360 420 480 540
Time (Minute)

C
P

U
 U

til
iz

at
io

n(
%

)

(d) Control output (CPU Utilisation)

30

40

50

60

70

80

0 60 120 180 240 300 360 420 480 540
Time (Minute)

C
P

U
 U

til
iz

at
io

n(
%

)

(e) Control output (CPU Utilisation)

30

40

50

60

70

80

0 60 120 180 240 300 360 420 480 540
Time (Minute)

C
P

U
 U

til
iz

at
io

n(
%

)

(f) Control output (CPU Utilisation)

Fig. 4 SID experiments: each pair presents the relationship between cluster size and CPU utilisation

30

40

50

60

70

80

30 40 50 60 70 80
CPU Utilization (Predicted)

C
P

U
 U

til
iz

at
io

n
(A

ct
ua

l)

Fig. 5 Comparison of measured output vs predicted output

3100 Cluster Computing (2020) 23:3095–3117

123

same integral law specified by Eq. 6. However, their

integral gain parameter is different. The following equa-

tions represent each employed controller:

u
LðtÞ ¼ uðt � 1Þ þ K

L

i
eðtÞ ð7Þ

u
M ðtÞ ¼ uðt � 1Þ þ K

M

i
eðtÞ ð8Þ

u
AðtÞ ¼ uðt � 1Þ þ K

A

i
eðtÞ ð9Þ

The gains K
L

i
, K

M

i
and K

A

i
are derived using the standard

procedure of Root-locus that provides a systematic method

to analyse and design feedback controllers. The Root-locus

method require the transfer function of the feedback con-

trol system. Such a transfer function can be obtained by the

corresponding transfer functions of the different compo-

nents of the feedback loop. In our case, the different

components include the integral controller (represented by

Eq. 6) and the target system (represented by one of the

model earlier described in Sect. 2.1.3). The transfer func-

tion of integral controller is given in Eq. 10, whereas the

transfer function of the system model of Eq. 4a is provided

in Eq. 11. Based on these equations, the transfer function of

the entire feedback loop [35] is provided in Eq. 12.

CðzÞ ¼ zKi

z� 1
ð10Þ

GðzÞ ¼ 0:18

z� 0:89
ð11Þ

FRðzÞ ¼
0:18Kiz

z2 þ ð0:18Ki � 1:89Þzþ 0:89
ð12Þ

Using the Root-locus method by taking into account the

transfer function of feedback loop (Eq. 12), we finalise the

following values � 0:06, � 0:2, and � 0:5 for K
L

i
, K

M

i
, and

K
A

i
gains respectively. The analysis performed using Root-

locus indicate that the system remains stable (always reach

to equilibrium) and accurate (steady-state error reach to

zero) using all the selected gains. The finalised value has a

settling time of less than 10 time interval, whereas, the

maximum overshoot recorded is less than 15%.

2.2 The switching mechanism: a fuzzy control
system

2.2.1 Overview

The deployed application over cloud environment auto-

matically inherits the uncertainty related challenges asso-

ciated with the cloud environment [41]. Hence the elastic

method, responsible for the resource management of the

application, has to deal with these challenges. The exam-

ples of such uncertainties, summarised from

[14, 27, 28, 41, 42], include impreciseness in domain

knowledge, noise in monitoring data, inaccuracies in per-

formance model, delay caused due to actuator operation

and unpredictability in workload. Jamshidi et al. [14, 27]

and Farokhi et al. [28] stressed the importance of the

uncertainty aspects to be taken into consideration while

designing the elastic controller. Otherwise, scaling deci-

sions often result in unreliability as the available resources

may fail to fulfil the requirements, or may not be cost-

effective [28]. However, despite the importance, the

implementation of uncertainty in the context of cloud

elasticity has not yet been well received [28].

A step in this direction is the work of Jamshidi et al. in

[14], where they proposed a fuzzy control system focusing

mainly on two issues: (1) The quantitative nature of the

Rules-based method by introducing the idea of qualitative

elasticity rules; and (2) The lack of consideration regarding

uncertainty raise due to noise in monitoring input data.

Their fuzzy controller introduces elasticity rules of the

following nature:

IF workload IS high AND responsetime IS slow THEN

add 2 VMs

The elasticity engine executes such rules at runtime and

makes decision, based on Arrival rate and Response Time.

The output of their controller is the number of VMs to be

added or removed. Their approach facilitates a dynamic

response based on the aforementioned two parameters by

making a scaling decision with different intensity levels,

and consequently it improves the static scaling issue of the

Rule-based approaches. However, the output (number of

VMs) is a pre-defined range of constant integers, and these

numbers are set-up based on the experiences of the experts

rather than rely on a well-founded design approach. In

contrast, our proposed approach relies on the systematic

method of control theory to compute the number of VMs.

Moreover, our approach is hybrid in nature, i.e. it also

incorporates both the performance and capacity based

metrics as opposed to their performance based approach

only. This paper compliments and extends the work of

Jamshidi et al. [14] aiming to develop a fuzzy control

system to implement the switching mechanism of the

proposed framework. The following subsections explain

the design process of this switching mechanism.

2.2.2 The design process

The construction of a fuzzy system involves the following

three steps: establishing domain knowledge, designing

membership functions and composing fuzzy rules. The

details of each of these steps in the context of our switching

mechanism are provided below.

Domain knowledge The domain knowledge is concerned

with the identification of inputs and outputs of the system.

The inputs specify factors of the system that are important

Cluster Computing (2020) 23:3095–3117 3101

123

to be considered for decision-making purposes. As men-

tioned earlier, the proposed method considers three dif-

ferent aspects of the system for decision-making. These

aspects are the inputs of the fuzzy system and their brief

description are provided below:

1. Response time indicates the performance level of the

deployed application and is measured as the percentage

number of SLO violations (i.e. when Response time of

a job request[0.6 s) in the last time unit.

2. Arrival rate indicates the workload behaviour in the

last time unit and is measured as percentage number of

job arrivals. The System Monitor component of the

proposed method records the number of arrivals in the

last time period to identify the intensity of the

workload.

3. Control error inclusion as an input is the consideration

of resource utilisation level into the decision-making.

The Control error is the difference between the

measured and desired CPU utilisation.

These inputs cover performance, disturbance and resource

utilisation aspects in the decision-making mechanism.

Contrary to the fuzzy controller of Jamshidi et al. in [14]

that directly produces the pre-defined constant number of

VMs as a scaling decision, the output of our fuzzy system

is one of the employed controllers that will be used to

compute the scaling decision.

The next step is to define fuzzy set for each input and

output (commonly known as fuzzy variables). The fuzzy

set of each variable comprises of defining linguistic terms

and assigns ranges of values to them. Table 1 provides the

definitions of all the linguistic terms for each fuzzy variable

and their corresponding ranges, whereas their brief

description is given as follows:

– The linguistic terms and the corresponding ranges for

the Workload (i.e. Arrival rate) variable are adapted

from the work of Jamshidi et al. in [14], where the

knowledge base is constructed using domain experts,

i.e. architects and administrators. They constructed a

fuzzy set of five linguistic terms for Workload variable

including Very low, Low, Medium, High and Very high.

We reduce them to three to minimise the number of

rules, hence reduce the complexity. However, more

fine-grained control over resources can be obtained by

increasing the number of workload categories or the

number of controllers.

– The linguistic terms of Response time variable reflect

the overall performance objective of the application

that can be defined by the SPs. In Table 1, we use

symbols b1, b2, b3 and b4 to represent the customisable

aspect of these parameters. Jamshidi et al. [14] in

contrast, distributed the Response time into five cate-

gories with the values obtained from domain experts.

However, considering that the application performance

measurement for different applications is different, the

values of the linguistic terms of Response time are

customisable to reflect the desired performance objec-

tive and have to be defined by the SPs. In the current

settings of this paper, we adopt the following values for

evaluation purposes, i.e. b1 ¼ 3%, b2 ¼ 5%, b3 ¼ 8%,

and b4 ¼ 10%.

– The linguistic terms of Control error are obtained by

distributing the Control error measurement into five

categories. An increase in these categories can provide

more fine-grained control. However, it will also

increase the complexity of the proposed method. The

ranges of these linguistic terms are obtained using trial

and error method, where various experiments are

carried out using different ranges.

– The linguistic terms of Controller variable are the

possible outcomes. These terms depend on the number

of controllers, which in this case are three. We also

consider one more output, i.e. No-scaling that specifies

no action is required. The ranges of these linguistic

terms are set based on the approach adopted in [43],

where no overlapping of the range is required because

the final decision represents a range that corresponds to

a single output rather than a numerical value.

Membership Functions The next step is to define the

membership functions that convert the crisp inputs into the

corresponding fuzzy values. The membership function

defines the degree of the crisp input against its linguistic

variables in the range of 0 to 1. The design of the mem-

bership functions, adopted from Jamshidi et al. [14], use

Table 1 Ranges for fuzzy variables

Fuzzy variable Set member Range

Workload Low 0–48.9

Medium 30.7–67.94

High 56.41–100

Response time Desirable 0–b2
Okay b1–b4
Bad b3–100

Control error Stronger negative (stNeg) - 20 to - 100

Weaker negative (weNeg) - 5 to - 30

Normal - 10 to 10

Weaker positive (wePos) 5–30

Stronger positive (stPos) 20–100

Controller No scaling 0–10

Lazy 11–20

Moderate 21–30

Aggressive 31–40

3102 Cluster Computing (2020) 23:3095–3117

123

triangular and trapezoidal types of function. These func-

tions have the advantage of being simple and efficient in

comparison with other types of membership functions [44].

Figure 6 represents the membership functions of our fuzzy

control system.

Fuzzy rules The fuzzy rules describe the relationship

between the inputs and outputs of the fuzzy control system.

Each fuzzy rule, in this case, determines the type of the

controller that makes the scaling decision. The fuzzy rules

are made of using fuzzy logic statements and follow the if-

then pattern. The fuzzy rules of the switching mechanism

are made using the linguistic terms of the fuzzy variables

explained earlier in Sect. 2.2.2. An example of such a rule

is provided below:

IF arrivalRate IS high AND responseTime IS desirable

AND controlError IS wePos THEN controller IS lazy.

In the above example, a Lazy controller is selected based

on the values of Arrival rate, Response time and Control

error. Such rules for an application scenario can be

designed using the combination of linguistic terms pro-

vided for each parameter in the rule (see Table 1). Such

rules can also be tuned for different situations using opti-

misation approaches. A full list of the rules employed for

the experimentation conducted in this paper are provided in

Table 2. These rules are designed using the following

considerations: (1) Select those rules that react quickly if

the application performance is poor; (2) If the application

performance is desirable then aims to reduce system run-

ning cost; (3) Aim to maintain the CPU utilisation around

the desired reference value.

3 Experimentation and computational
results I

The experimental environment used for the evaluation is

developed using Java language that integrates a well-

known cloud simulation environment called CloudSim [34]

and an external Java-based library called JFuzzyLogic [45].

The following subsections explain the various aspects of

experimentation and the obtained computational results.

3.1 Workloads

The commonly used approach to test an auto-scaling

methodology is to evaluate its performance against differ-

ent workloads, based on certain desirable criteria. Gandhi

et al. in [46] and Jamshidi et al. in [14] evaluated their

proposed elastic methods using workloads that follow

different patterns. The key reason of using such an

approach is to evaluate and analyse the performance of an

elastic method in different scenarios. The workload pat-

terns that they have used include Quickly varying, Slowly

varying, Dual phase, Tri phase, Big spike and Large

variations. Similarly, Mao and Humphrey [47] used Stable,

Cyclic, Growing and On–off set of patterns. Each of these

patterns represents a different class of applications [26].

This research also adopts the patterns mentioned above to

analyse the performance of the proposed method. In this

paper, we identify seven different workloads that can be

seen from Fig. 7 to represent a single or multiple patterns.

Amongst these, one is synthetically generated, whereas the

remaining six are derived from the following real Internet-

based sources including Wikipedia [48], FIFA World Cup

[49] and WITS (Waikato Internet Traffic Storage) [50]

project. All the derived workloads traces are vertically

scaled to a maximum of 60,000 rpm and the number of

arrivals on per minute basis is obtained from the count of

actual arrivals except for the synthetically generated one.

Furthermore, the service time of each job request is ran-

domly generated between 100 and 500 ms to incorporate

the stochastic behaviour of the incoming arrivals.

μ

0

1

10 20 30 40 50 60 70 80 90 100

low medium high

(a) Workload

μ

0

1

β1 β2 β3 β4

3 6 9 12 100

desirable okay bad

(b) Response time

μ

0

1

-100 ... -30 -20 -10 0 10 20 30 ... 100

stNeg weNeg normal wePos stPos

(c) Control error

μ

0

1

5 10 15 20 25 30 35 40

no-scaling lazy moderate aggressive

(d) Controller

Fig. 6 Membership functions

Cluster Computing (2020) 23:3095–3117 3103

123

3.2 Benchmark approaches/scenarios

3.2.1 Fixed gain feedback controller

We have used Fixed gain feedback controller as one of the

benchmark methods. The key reason behind is that our

proposed method is an extension of such an approach,

where we use multiple Fixed gain controllers simultane-

ously. The individual elastic controllers are termed Lazy,

Moderate and Aggressive respectively, thus aiming to

demonstrate the effect of using the same controllers

independently versus using them collectively as in the

proposed framework.

The nature of the individual controllers, i.e. Lazy,

Moderate and Aggressive, in general are similar to those

used in related elastic methodologies such as

[9, 11, 37, 51]. The individual controllers are implemented

following the proportional threshold approach of [9], where

the Reference input is considered as a range rather than a

scaler value. This approach avoids the unnecessary oscil-

lations by restricting the controller not to take a decision if

the measured output is within a certain range. In this paper,

Table 2 All switching elasticity

rules
W RT CE No-scaling Controller

Lazy Moderate Aggressive

High Desirable wePos 4

High Desirable stPos 4

Medium Desirable wePos 4

Medium Desirable stPos 4

Low Desirable wePos 4

High Desirable stPos 4

High Desirable weNeg 4

High Desirable stNeg 4

High Okay weNeg 4

High Okay stNeg 4

High Bad weNeg 4

High Bad stNeg 4

Medium Desirable weNeg 4

Medium Desirable stNeg 4

Medium Okay weNeg 4

Medium Okay stNeg 4

Medium Bad weNeg 4

Medium Bad stNeg 4

Low Desirable weNeg 4

Low Desirable stNeg 4

Low Okay weNeg 4

Low Okay stNeg 4

Low Bad weNeg 4

Low Bad stNeg 4

– – Normal 4

20

40

60

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (Hours)

R
eq

ue
st

s
(*

 1
00

0)

LargeVariation OnOff

(a) FIFA Worldcup and On off (Syn-
thetic)

20

40

60

0 2 4 6 8 10 12 14 16

Time (Hours)

R
eq

ue
st

s
(*

 1
00

0)

dualPhase quicklyVarying triPhase

(b) WITS

20

40

60

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (Hours)

R
eq

ue
st

s
(*

 1
00

0)

Cyclic SlowlyVarying

(c) Wikipedia

Fig. 7 Various workloads used for experimentation

3104 Cluster Computing (2020) 23:3095–3117

123

we consider a range �10% of Reference input (55%),

because it is the same as the range of Normal linguistic

term of Control error fuzzy variable used in our proposed

switching mechanism.

3.2.2 RightScale: a rule-based approach

The RightScale [5] is a 3rd party commercially available

auto-scaling approach, which is a Rule-based method. In

the RightScale method, each VM engages in a voting pro-

cess, where every VM decides whether a scaling decision is

required or not. The decision by individual VMs is based

on the set of elasticity rules. The implementation of

RightScale includes the setting of decision threshold value

for the voting process. For this purpose the value 51% is

used. This represent, if just more than half of the VMs are

in favour of the decision then the action will be performed.

Otherwise, it will be ignored. Another important aspect of

RightScale implementation includes the determination of

system metric to be used for setting up the rules. For this

purpose, we use CPU utilisation as a system metric based

on its usage as the Reference input in the proposed method.

The elasticity rules used for the implementation are as

following:

For scale up

if CPU Utilisation [thrup then

n ¼ nþ sa and

do nothing for t seconds

For scale down

if CPU Utilisation \thrdown then

n ¼ n� sr and

do nothing for t seconds

The value use for thrup is 55%, i.e. the desired Reference

input of our proposed method as we already know, the

performance degrades when CPU utilisation becomes

higher than 55%. The value for thrdown obtained by trying

different possible values such as (20%, 30% and 40%) and

then selected, the value that produces the better result

regarding the evaluation criteria (explain in next section).

Another important configuration required is the settings of

values for sa and sr. For this purpose, we use the following

four different settings: (1) sa ¼ sr ¼ 2, (2) sa ¼ 2; sa ¼ 1,

(3) sa ¼ 4; sr ¼ 2 and (4) sa ¼ 10%; sr ¼ 5%. Lastly, the

t in both of the above rules specifies.

3.3 Evaluation criteria

The key objective of implementing cloud elasticity is to

improve the utilisation of computational resources whilst

maintaining the desired performance of the system and

reducing its operational cost. This statement hints on the

fundamental criteria, i.e. Performance and Cost for the

assessment of an auto-scaling mechanism. The brief details

for each aspect in the context of this paper is as follows.

1. Service level objective (SLO) Violations We consider

Response time as a criterion to measure the perfor-

mance of the elastic method. The requirement regard-

ing desired performance objective in cloud computing

is defined through SLO specification. In this paper, we

consider that each job request of the workload must be

completed in the pre-defined desired time, i.e. � 0.6 s.

Thus an SLO violation is considered, if the desired

Response time for a job request has not been achieved.

2. Cost The Cost refers to the operational cost of the

rented VMs. These VMs are used to execute the

workload and each VM is associated with a cost per

time unit. The total running time of all VMs is recorded

for the entire experiment. This includes the time when

a VM starts to the time it finishes execution, either as a

result of a Scale-down action or when the experiment

finishes. A rate of 0.013$ per hour is applied to

calculate the final cost based on the Amazon pricing

[52] for the VM instances of ‘‘t2.micro’’ type.

3.4 Computational results and analysis

The benchmark methods as well as the proposed methods

are implemented into the CloudSim environment. Cloud-

Sim is extensively used in the cloud related research

activities for modelling and simulation of cloud computing

systems and applications. We have used, and extended

where necessary, its various functionalities, such as the

scheduling strategies, creation and deletion of VMs, etc.

For the experiments, all VMs are identical and are

considered as abstract servers, that imitate to serve a

specific purpose, e.g. act as web servers. Furthermore, for

each particular method, i.e. the benchmark methods and the

proposed methods, the following related aspects of the

simulation environment remain the same:

– VM creation The focus of our proposed method is from

the SP perspective, where the main concern is with the

management of rented VMs and not the underlying

physical hardware that host VMs. Therefore, in this

research work, we are not considering aspects like

optimal placement of VMs on physical hosts, which is

in itself researched as an independent problem. For the

simplicity of the implementation, the default allocation

and scheduling policies of CloudSim concerning the

VM and Host related assignment and execution are

used.

– VM deletion In the case of scale down operation, the

VM with lowest number of jobs is selected to delete.

Cluster Computing (2020) 23:3095–3117 3105

123

The action of delete is however not immediate and the

deletion process wait until the completion of all jobs.

– Jobs allocation Analogous to the VM and Host related

allocation and scheduling policies, the assignment of

incoming jobs to the already available VMs are handled

through a round robin policy.

The computational results obtained from the experimen-

tation can be seen from Fig. 8. In this figure, rs_21, rs_22,

rs_42 and rs_pro represent the four different settings of the

RightScale method explained earlier in Sect. 3.2.2. Simi-

larly, Lazy, Mod and Agg refer to the benchmark methods

explained in Sect. 3.2.1 and HS represents the proposed

Hard switching method.

The plots in the left column of Fig. 8 present an

aggregated view of Cost versus Performance aspect of the

overall experiment for each method. Some of these plots do

not show results of few methods. The reason behind is that

in such cases, the number of SLO violations were recorded

as � 5%, i.e. higher than the desirable performance

objective. Therefore, those results were not of interest and

are excluded to improve the readability of plots. The only

exception to this criteria is in the case of On off scenario,

where all methods results in � 5% SLO violations, except

thle proposed method, i.e. HS. The plots in the right col-

umn present the corresponding time series view of the

number of SLO violations in an hourly basis for the three

methods that obtained comparatively better aggregate

results. This section briefly discusses each of the applied

methods in light of the obtained computational results.

1. Rightscale It is observed from the obtained results that

some settings of the Rightscale method produce better

performance in comparison to the other approaches, i.e.

Lazy, Mod, Agg and HS. However, this better perfor-

mance is obtained with a very higher cost. Such

phenomena are only observed in those scenarios, where

transitions in workloads are comparatively smooth, e.g.

in the case of Dual-phase, Cyclic and Slowly varying

scenarios. In other scenarios where sharp changes

occur in workloads, e.g. in the case of Large variations

and On–off scenarios, the performance is compara-

tively poorer than HS and Moderate despite being

expensive. A key reason behind is the underlying static

scaling behaviour of the Rightscale method, where a

scaling action is performed using a uniform quantity.

2. Aggressive It is observed that the aggregated results of

performance obtained using the Aggressive approach in

the case of Dual phase and Quickly varying scenarios

are comparatively better than HS. However, the time

series analysis of those scenarios indicates that the

performance of the system is poor in certain hours

specifically when the arrival rate of the workloads is

low. The key reason for this behaviour is the

inappropriate scaling intensity that causes a bigger

change in some cases, e.g. observe the time series view

of CPU utilisation in Fig. 9 for the first two hours and

5th hour in the case of Dual-phase scenario and 6th

hour in the case of Quickly varying scenario. The worst

situation arises in the case of Large variations, where

the system resources oscillate when the arrival rate of

the workload remains low. This indicates that using a

uniform Aggressive method at the entire time is not a

good choice and could lead the system to an

unstable state.

3. Moderate The performance of the Moderate policy

works well in the following two cases. Firstly, where

the incoming workload remains stable in a particular

region, e.g. the segment after the 8th hour in the case of

Large variation; Secondly, where the arrival rate

changes slowly, e.g. in the case of Slowly varying.

However, the Moderate method performs poorly in

comparison to the Agg and HS, when there are sharp

changes in the incoming workloads, e.g. the segment

after the 7th hour in the case of Quickly varying for the

7th and 19th hours in the case of On–off etc.

4. HS It is evident that the performance obtained using HS

in comparison to the above-mentioned methods

remains better in all of the following scenarios without

having an impact on cost, i.e. Large variations, Tri-

phase, Cyclic and On–off. The exception is in the cases

of Dual-phase and Quickly varying, where the aggre-

gate performance is slightly poorer than that of the

Aggressive method. However, considering the time

series analysis, the HS approach maintains better

performance during the entire time. Lastly, in the case

of Slowly varying, the HS and Moderate policy have

achieved similar performance.

The above discussion indicates that using a uniform

fixed policy is unable to cope with changing workload

conditions. In contrast, the proposed Hard switching con-

sists of the collection of the same policies with an addi-

tional switching mechanism result in an improved system

performance without an increase in the operational cost.

4 Biologically-inspired elasticity framework:
soft switching

The hard switching approach described in previous section

has the potential to improve system performance in com-

parison to the benchmark methods. However, such

methodologies are often criticised for their associated

unwanted behaviour, termed as bumpy transition, that

could lead the system to an oscillatory state [35, 43, 53].

Figure 10 demonstrate the occurrences of such unwanted

3106 Cluster Computing (2020) 23:3095–3117

123

behaviour in the results obtained using our hard switching

(HS) approach. The oscillation of resources may have

deteriorating effects on the system performance as well as

on the operational cost. It is therefore desirable that the

proposed method should result in smoother transitions to

avoid any oscillation.

Soft switching, on the other hand, is an alternative

technique used to avoid such unwanted behaviour. Such a

●

●
●

●

● ●

●

●

●

●

●

●

● ●
● ●600

620

640

660

0.3

1

1.7

2.4

HS Lazy Mod Agg rs_21 rs_22 rs_42 rs_pro
Method

C
os

t (
$)

S
LO

 V
iolations (%

)

Cost SLO Violations

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

0.5

1.0

1.5

2.0

2 4 6 8 10 12 14 16
Time (Hours)

S
LO

 V
io

la
tio

n
(%

)

● ● ●Agg HS Mod

(a) DualPhase

● ●
● ●

●
●

●
●

●

●

●

●

● ●
● ●

860

890

920

950

980

1010

0

0.35

0.7

1.05

1.4

1.75

HS Lazy Mod Agg rs_21 rs_22 rs_42 rs_pro
Method

C
os

t (
$)

S
LO

 V
iolations (%

)

Cost SLO Violations

● ● ● ● ● ● ● ● ● ●
● ●

● ● ●
● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

● ● ● ●
● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ● ● ● ● ● ● ● ●0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (Hours)

S
LO

 V
io

la
tio

n
(%

)

● ● ●Agg HS Mod

(b) Slowly varying

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

630

660

690

720

4.5

9

13.5

18

HS Lazy Mod Agg rs_21 rs_22 rs_42 rs_pro
Method

C
os

t (
$)

S
LO

 V
iolations (%

)

Cost SLO Violations

● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●
●

●

●
●

●

● ● ● ● ●

● ● ● ●

● ●

●

● ● ● ● ●● ●

●

● ●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ●0

20

40

60

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (Hours)

S
LO

 V
io

la
tio

n
(%

)

● ● ●Agg HS Mod

(c) On off

● ●
●

●

●

●

●

●

●

●

●

●

● ●

430

460

490

520

.75

1.5

2.25

3

HS Mod Agg rs_21 rs_22 rs_42 rs_pro
Method

C
os

t (
$)

S
LO

 V
iolations (%

)

Cost SLO Violations

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0

2

4

6

2 4 6 8 10
Time (Hours)

S
LO

 V
io

la
tio

n
(%

)

● ● ●Agg HS Mod

(d) Quickly varying

Fig. 8 The left column presents the integrated results for each employed workload, whereas, the right column present the number of SLO

violation (%) in a per hour basis

Cluster Computing (2020) 23:3095–3117 3107

123

mechanism in contrast to hard switching has the possibility

to select multiple actions rather than one best choice. The

key benefits of such an approach include: (1) avoidance of

singularity and sensitivity problems, (2) improvement of

robustness and stability aspects and (3) elimination of

chattering issues [54].

This section aim to explore the capabilities of a bio-

logically (cognitive) inspired action selection process to

implement soft switching behaviour, hence seeking the

possibility of more smoother (bumpless) transitions to

improve the stability perspective. Formally, an action

selection is the process of deciding what to do next from a

set of available actions by an agent, based on some

knowledge of the internal state and some provided sensory

information of the environmental context to best achieve its

desired goal [55]. Over a period of time, researchers have

learnt that in animal’s brain, the problem of action

selection is handled through the use of a central switching

mechanism [56, 57]. This mechanism is implemented by a

group of subcortical nuclei collectively refers to as Basal

Ganglia (BG) [56, 57]. For a functional anatomy of BG,

refer to [55]. To incorporate such a mechanism into our

framework, we integrate a well established BG based

computational model of Gurney et al. [58, 59]. The key

advantages of this computational model include its bio-

logical plausibility and computational efficiency [60]. The

block diagram of the enhanced framework (Soft switching)

can be seen from Fig. 11. Comparing this diagram with the

Hard switching approach, the following three differences

can be observed: (1) the integration of the BG component,

(2) the output of the FIS component and (3) the final output

of the control system. The details of each of these differ-

ences are provided in the following subsections:

● ●
●

●

●

●

● ●

●

●

560

590

620

0.75

1.5

2.25

HS Mod Agg rs_42 rs_pro
Method

C
os

t (
$)

S
LO

 V
iolations (%

)

Cost SLO Violations

●
● ●

●

●

●

● ●
●

● ●
●

● ●
● ●●

●

●

●

●

● ● ● ●

●
● ●

●
●

●
●● ●

●

●

●

● ● ● ●

●
● ●

● ●

●
●

0

3

6

9

12

2 4 6 8 10 12 14 16
Time (Hours)

S
LO

 V
io

la
tio

n
(%

)

● ● ●Agg HS Mod

(e) TriPhase

● ● ●

● ●

●

●
●

● ●

460

490

520

550

580

0

0.37

0.75

1.12

1.5

HS Mod Agg rs_42 rs_pro
Method

C
os

t (
$)

S
LO

 V
iolations (%

)

Cost SLO Violations

● ● ●

●

●

●

●
● ● ● ●

●

●

●

●
● ●

● ●

●

●

●

● ● ●

●

●
●

●
● ●

●
●

●

●

●

●
● ● ● ●

●

●
●

● ● ●

● ●

●

●
● ●

● ●

●
●

●

●
● ●

● ●

● ●

●

0.0

2.5

5.0

7.5

10.0

0 2 4 6 8 10 12 14 16 18 20 22
Time (Hours)

S
LO

 V
io

la
tio

n
(%

)

● ● ●Agg HS Mod

(f) Cyclic

●
●

●

●

●
●

●

●490

520

550

1.25

2.5

3.25

HS Mod Agg rs_42
Method

C
os

t (
$)

S
LO

 V
iolations (%

)

Cost SLO Violations

● ● ● ● ● ●

●

● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ●● ● ●

●
●

● ● ● ● ● ●

●

● ●

●

●
●

●
●

● ●

●

●

●

● ● ● ● ● ●

●

● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ●
●

0

10

20

30

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (Hours)

S
LO

 V
io

la
tio

n
(%

)

● ● ●Agg HS Mod

(g) Big variation

Fig. 8 continued

3108 Cluster Computing (2020) 23:3095–3117

123

4.1 The BG component

This component integrates the BG based computational

model that builds on the functional anatomy of BG. Some

examples of such models include [58, 59, 61–63]. Amongst

these models, we utilised the computational model pro-

posed in [58, 59]. However, any model can be used as our

aim is not to identify the best action selection or biologi-

cally-inspired computational model rather to demonstrate

the effectiveness of such an approach in the context of the

cloud elasticity.

Focusing on Gurney et al. [58, 59] computational model,

the brain subsystems send excitatory signals that represent

the behavioural expressions to the BG. Each behavioural

expression defines an action in BG and its strength is

determined by the salience that represents the activity level

of its neural representation. These actions are mediated

through the release of inhibitory signals. Thus in each

iteration, the functional model accepts a set of salience

signals and produces a set of selected and unselected output

signals. The functional model can select a maximum of one

action (referred as Hard mode), similar to the Hard

switching approach earlier described in Sect. 2. Alterna-

tively, the functional model can also have the possibility to

select multiple actions (referred as Soft mode). In this

research work, we are interested in the Soft mode of the

functional model, where it result in the selection of mul-

tiple actions. For a detailed description of the functional

model refers to [58, 59].

The BG component, shown in Fig. 11, accepts three

inputs namely lazySalience, modSalience and aggSalience.

These inputs represent the strength of selection for each

controller (depicting as action). The values for these sal-

ience signals are computed by the FIS (details provided in

the next section).

4.2 The modified FIS

The BG based computational model requires salience sig-

nals as inputs. Thus the first issue to be dealt with is the

generation of salience signals. The method to generate the

salience signals can make use of system’s internal state,

various performance metrics or available sensory infor-

mation [60]. Therefore, we have extended the FIS, used as

a switching mechanism in previous section, to generate the

inputs (salience signals) for the BG component of the

framework. The inputs of the modified FIS remains the

same, i.e. Workload, ResponseTime and ControlError.

However, the output is changed from one, i.e. Controller to

three lazySalience, modSalience and aggSalience. Each of

these outputs represents the salience strengths for the

selection of each of the three controllers. The details of the

changes carried out are as following:

1. Membership functions The inputs of the modified FIS

do not change, and therefore the corresponding mem-

bership functions of the input fuzzy variables remain

the same. However, the output is changed, therefore,

the Controller membership function is replaced with

three new membership functions, i.e. one for each

newly introduced output. Similar to the Controller

membership function, we have used the basic triangu-

lar type for all the outputs. The membership function

for each salience signal variable is of the form shown

in Fig. 12.

D
ual−P

hase
Large−Variation

Q
uickly−Varying

0 2 4 6 8 10 12 14 16 18 20 22 24

30

40

50

60

70

80

30

40

50

60

70

80

30

40

50

60

70

80

Time (Hours)

C
P

U
 U

til
iz

at
io

n
(%

)

Fig. 9 CPU utilisation using aggressive method
D

ual−phase
O

n−off
Tri−P

hase

0 2 4 6 8 10 12 14 16 18 20 22 24

50

55

60

65

70

20

40

60

80

40

50

60

70

Time (Hours)

C
P

U
 U

til
iz

at
io

n
(%

)

Fig. 10 Time series of CPU Utilization obtained using HS approach

Cluster Computing (2020) 23:3095–3117 3109

123

2. Fuzzy rules The fuzzy rules are responsible to generate

the salience inputs. The fuzzy rules described in

previous section are revised accordingly. The inputs

of the rules are the same as in the case of Hard

switching. However, the output can be formed using

the linguistic terms (weak, average and strong) for

each salience. An example of such rule is provided

below:

IF arrivalRate IS medium AND responseTime IS de-

sirable AND controlError IS stPos THEN modSalience IS

strong AND aggSalience IS average

4.3 Derivation of final output

As mentioned earlier, in terms of the adopted functional

model, we are interested in the mode, where it result in the

possibility of multiple actions section. Hence the final

decision, i.e. the number of VMs, will be derived using the

output signals returned by the BG component and the

outputs of the individual controllers. The following equa-

tion represents this derivation.

ut ¼
ðuLðtÞ � g

L
Þ þ ðuM ðtÞ � g

M
Þ þ ðuAðtÞ � g

A
Þ

g
ð13Þ

The ut in the above equation represent the final decision.

u
LðtÞ, uM ðtÞ and u

AðtÞ represents the output of individual

controllers, i.e. lazy, moderate and aggressive respectively.

These outputs are computed as per the equations described

in Sect. 2.1.4, i.e. Eqs. 7, 8 and 9 respectively. Whereas, g
L
,

g
M

and g
A
are the output signals returned by the BG

component. The values of these signals lies between 0 to 1

and they signify the proportion of each action. The

denominator g represents the number of those output sig-

nals with a value higher than zero. However, it is not

always the case that more than one controller to be

selected.

5 Computational results II

We have used the same experimental settings and scenarios

(i.e. gains for controllers and workloads) as in the case of

Hard switching to evaluate the Soft switching approach. It

is already discussed previously that the Hard switching

achieves better results compared to the benchmark meth-

ods. Therefore, in this section, we only compare Soft

switching to Hard switching approach. We present and

discuss the obtained computational results in the following

two aspects:

5.1 Performance

Figure 13 shows the aggregated view of the results

obtained using both the approaches, i.e. Soft switching and

Hard switching. These approaches are represented as SS

and HS respectively in the reported results. Considering the

number of SLO violations, it is evident that the SS

approach has obtained, lower number of SLO violations to

that of HS, in each employed scenarios. On the other hand,

the comparison of the cost perspective indicate the similar

level of spending by both approaches, i.e. SS and HS. This

demonstrates that the SS approach results in better perfor-

mance compared to that of HS without increasing the

operational cost of the system.

Figure 14 provides an insight into the performance of

both the approaches on an hourly basis. Each plot of this

diagram represents the result for every employed workload

Lazy

Target
system

VM (1) VM (n)

Elastic action
Moderate

Aggressive

Fuzzy Inference
System (FIS)

Measured CPU
utilisation (y)VMs (u)

Control
error (e)

Reference CPU
utilisation ()

System Monitor
Arrival Rate

Response Time
Basal Ganglia

(BG)

lazySalience
modSalience
aggSalience

∑

()

()

()

Fig. 11 Biologically-inspired

soft switching framework

μ

0

1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

weak average strong

Salience strength

Fig. 12 Membership functions for each salience variable, i.e. lazy,

moderate and aggressive

3110 Cluster Computing (2020) 23:3095–3117

123

scenario. The analysis of these plots hints the following: (1)

The performance obtained, in the cases of each scenario,

using SS approach in almost every hour is either similar to

that of HS or comparatively better. This indicates a higher

potential to maintain better performance during the entire

period of the experiment. (2) The SS and HS approach

behave almost similarly in scenarios, when there are sharp

increases in workload, e.g. the 6th hour in the case of

Cyclic, the 7th hour in the case of Large variations and the

7th and 19th hours in the case of On–off scenarios. (3) The

SS approach performs comparatively better when the arri-

val rate of the workload remains low, e.g. initial 5 hours

period in the case of Dual-phase and the hours from 15th to

18th in the case of On–off. This indicates that at the time of

low workload, the decision of HS affects the performance

more due to its best controller selection strategy in com-

parison to that of SS approach.

5.2 Oscillatory behaviour

The results presented in the previous section demonstrate

the effectiveness of the Soft switching approach regarding

the improvement of the overall performance. This section

discusses the possibility of reducing the likelihood of

bumpy transitions and oscillation in comparison to the

Hard switching approach.

Figure 15 presents the measured CPU utilisation recor-

ded for HS and SS approaches. The analysis of these plots

hints on the following insights:

1. Focusing on the highlighted parts of HS plot for On–off

scenario clearly hint at the presence of oscillations at

two occasions, i.e. in the 3rd hours and in the 15th to

16th hours. On the other hand, using SS approach, no

such oscillations can be seen in the corresponding SS

plot that demonstrates clear improvements.

2. Considering the DualPhase scenario shown in Fig. 15,

it is clear that there is no oscillation using both the

approaches. However, the highlighted part in the case

of HS shows some bumpy transitions, i.e. in the 6th and

8th hours. Whereas in the case of the SS approach, the

intensity of these bumpy transitions is reduced as is

evident by visual inspection of both plots. Moreover,

the variance of CPU utilisation measurements of 3 h,

i.e. from 6th to 8th is calculated for both cases. These

calculations are recorded as 12.84 and 15.24 for the SS

and HS respectively. This demonstrates that the SS

results in fewer variations compared to that of HS in

those 3 h. Similar results can be seen for the scenario of

●

●

●

● ●

●

●
●

●

●
● ●

●

●
1

2

3

4

DualPhase On−off QuicklyVar Cyclic TriPhase LargeVar SlowlyVar
Workload scenario

S
LO

 V
io

la
tio

ns
 (%

) ● ●HS SS

0

250

500

750

DualPhase On−off QuicklyVar Cyclic TriPhase LargeVar SlowlyVar
Workload scenario

C
os

t (
$)

HS SS

Fig. 13 Aggregated view (HS vs SS)

● ●
●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

● ●

●

●
●

●

● ●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

● ●

●

●

●
●

●

●

●

●

● ● ●

● ●

●
●

●
●

●

● ●

●
●

● ●

●

●

●
●

●

●

●

●
● ●

●
● ● ● ● ●

● ●

● ●

●

● ●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ●
●

●

● ● ●
●

● ● ●
●

● ●
●

●

●

●

● ●

●

●

●

● ● ● ●

●
●

●

●

●

●
● ●

●

●
●

●

● ●

●
●●

●
●

●

●

● ● ●

●

● ●
●

● ●

●
●

C
yclic

D
ual−phase

Large varying
O

n−off
Q

uickly varying
S

low
ly varying

Tri−phase

0 2 4 6 8 10 12 14 16 18 20 22 24

0

1

2

3

0.5

1.0

1.5

2.0

0

1

2

3

4

0

10

20

30

0

1

2

3

0.5

1.0

1.5

2.0

2.5

0

1

2

3

4

Time (Hours)

S
LO

 v
io

la
tio

ns
 (%

)

● ●HS SS

Fig. 14 Time series view of SLO violation

Cluster Computing (2020) 23:3095–3117 3111

123

TriPhase, where the variation in the case of SS from

4th to 6th is fewer than that of HS.

3. The red dashed line in each plot of Fig. 15 represents

the mean CPU utilisation obtained using the respective

methods in each corresponding scenario. In all of the

given three scenarios, the mean obtained using SS

approach is comparatively less than that of HS, e.g. in

the case of On–off, the means are 52.56 and 54.19

recorded using SS and HS respectively. This

demonstrates that the SS approach is comparatively

better and maintains the CPU utilisation below 55%

more often than the HS approach.

In light of the above discussions, we can claim that the BG

based Soft switching approach has higher potential to

reduce the number of SLO violations, hence, result in

better system performance. Moreover, compared with the

HS approach, it has demonstrated the possibility of

reducing the likelihood of bumpy transitions and oscilla-

tory behaviour. The intuitive explanation for this

improvement is the integration of controllers, (shown in

Eq. (13)), in a biologically-inspired fashion augmented

with the BG process that facilitates the natural selection of

actions, hence result in less ’bumping’ at switching time

[64]. Moreover, the computational model of [58, 59] in

particular is successfully validated to avoid oscillation [62].

6 Related work and discussion

The proposed elasticity methods are developed using

control-theoretical based multiple controllers and fuzzy

control system. This synergy, on one hand, enables us to

address the inherent uncertainty related issues of a cloud

environment using the fuzzy control system. On the other

hand, the systematic design of model-based feedback

controllers helps in strengthening the reliability of the

system. In this paper, we chose to address the cloud elas-

ticity from a Service Providers (SPs) perspective. The key

motivations behind this choice are that the cloud based

applications are subject to varying workload conditions,

and the Cloud Providers (CPs) lack control and visibility

regarding application performance aspects that make it

difficult to perform efficient scaling decisions [65]. In

contrast, the SPs have full control and visibility of cloud

resources using monitoring and management APIs pro-

vided by CPs, as well as an up-to-date knowledge of an

application status using custom or 3rd party tools. The

proposed methods are hybrid in nature, and consider

application level metric (Response time) as well as system

level metric (CPU utilisation). Additionally, we consider

the Arrival rate that represents the incoming workload

intensity level into the decision making process. The con-

sideration of these three parameters empower the proposed

methodology to make an informed scaling decision, as

opposed to the majority of the existing related approaches

that either rely on application level [14, 31] or system level

metrics [11, 32, 33].

The existing Rule-based solutions in general are

prevalent due to their intuitive, simplistic and, more

importantly, commercial availability factors [66]. Such

approaches [4–8] are easy to design and well understood by

54.19

52.56

H
S

S
S

0 2 4 6 8 10 12 14 16 18 20 22 24

20

40

60

80

20

40

60

80

Time (Hours)

C
P

U
 U

til
iz

at
io

n
(%

)
(a) Onoff

55.79

55.01

H
S

S
S

0 2 4 6 8 10 12 14 16

50
55
60
65
70

50
55
60
65
70

Time (Hours)

C
P

U
 U

til
iz

at
io

n
(%

)

(b) DualPhase

54.57

53.02

H
S

S
S

0 2 4 6 8 10 12 14 16

40

50

60

70

40

50

60

70

Time (Hours)

C
P

U
 U

til
iz

at
io

n
(%

)

(c) TriPhase

Fig. 15 CPU utilisation (HS vs SS)

3112 Cluster Computing (2020) 23:3095–3117

123

the system designers and administrators alike. However,

such methods lack a formal systematic design process as

they are designed based on previous experiences or

applying a trial and error approach [66, 67]. Moreover, they

are criticised for the difficulty in setting-up various

thresholds of the rules and their inability to cope with the

changing environment behaviour [14, 26]. This is evident

from the configurations and results of the RightScale

approach discussed in Sect. 3.

The feedback control solutions [9–12, 33, 37, 68] follow

the fixed gain design principle of control theory. Such fixed

gain methodologies in general work well for systems that

are subject to stable or slowly varying workload conditions

[67]. However, due to the lack of adaptive behaviour at

runtime, the performance suffers in scenarios where the

operating conditions change quickly or when the environ-

mental conditions and configuration spaces are too wide to

be explored effectively [25]. The lack of adaptivity issue

has been addressed by incorporating online learning algo-

rithms such as the use of linear regression [69], optimisa-

tion [70], Kalman filter [71] and reinforcement learning

[72]. In general, such adaptive control methodologies have

the ability to modify themselves to the changing behaviour

in the system environment that make them suitable for

systems with changing workload conditions. However,

they are also criticised for the additional computational

cost caused due to the online learning [26], their associated

risk of reducing the quality assurance of the resulted sys-

tem, and the impossibility of deriving a convergence or

stability proof [25]. Moreover, they are unable to cope with

sudden changes in the workloads.

Al-Shishtawy and Vlassov [73] addressed the elasticity

problem using a two-level approach, where they utilised a

combination of an Model Predictive Controller (MPC)

based feedforward control solution and a Proportional

Integral (PI) based feedback control method. Using such an

approach, the feed-forward method follows a predictive

approach that takes scaling decisions for a longer time in

advance; whereas the feedback method is responsible for

making gradual changes in a reactive style. Such two-step

hybrid control solutions are effective; however, currently

our focus is on the efficiency of elastic solution imple-

mented at the 2nd level that follows a reactive strategy. Al-

Shishtawy and Vlassov [73] utilised a fixed gain PI feed-

back controller that suffers from various issues discussed

earlier in this section, whereas the approach adopted in this

thesis uses multiple fixed gain controllers. Wang et al.,

Kjaer et al. [74–76] followed a similar approach, i.e. the

combination of feed-forward and feedback. However, they

have focused on vertical elasticity.

The following proposals have also adopted a similar

approach as employed in this paper. For example, Grimaldi

et al. [32] used a PID gain scheduling. Their gain scheduler

is an optimal controller that derives the gains using an

optimisation based tuning procedure. The key issues of

such an approach are similar to that of an adaptive methods

discussed earlier in this section. Saikrishna et al., Qin and

Wang, and Taneli et al. [77–79] followed a Linear

Parameter Varying (LPV) approach. CPU utilisation is

considered as the single scheduling parameter by Saikr-

ishna et al. [77], whereas Qin and Wang, and Taneli et al.

[78, 79] rely on arrival rate and service rate. Patikirikorala

et al. [31] followed a MMST based control solution. Their

method use two different operating regions and consist of

two different fixed gain controllers with an if-else switch-

ing that is based on Response time only. Saikrishna et al.

[80], in contrast, used ten distinct operating regions and

Arrival rate as a switching signal.

Jamshidi et al. [14, 15] highlighted the uncertainty

related issues and the idea of qualitative elasticity rules

using a fuzzy control system to address the issues of Rule-

based approach. The inputs to their method consist of Ar-

rival rate and Response time, whereas the output is the

number of VMs to be added or removed. Their approach

facilitates a dynamic response based on the aforementioned

two parameters by making a scaling decision with different

intensity level, and consequently it helps avoid the static

scaling issue of the Rule-based approaches. However, the

output (number of VMs) are a pre-defined range of con-

stant integers, and it is not clear how these numbers are set-

up. Therefore, it creates similar problems to that of the

Rule-based approach, i.e. difficulty in setting-up threshold

values of rules and lack of a well-founded design approach.

On the other hand, machine learning based control solu-

tions that utilise either reinforcement learning [19, 20] or

neural networks [81, 82] provide high levels of flexibility

and adaptivity. However, such flexibility and adaptivity

come at the cost of long training delays, poor scalability,

slower convergence rate, and the impossibility of deriving

stability proof [25, 26, 83, 84].

It is concluded from the above discussion that the dif-

ferent elastic controllers due to their underlying imple-

mentation techniques have different pros and cons, hence

there is no best solution and the choice of selecting suit-

able approaches depends on the requirements [25]. The

research work carried out in this paper advocates the idea

of a fixed-adaptive approach (also referred to as hybrid by

Gambi et al. [25]) in contrast to either completely fixed or

fully adaptive methods. The proposed elastic methodolo-

gies are implemented using the combination of the model-

based control-theoretical approach and the knowledge

based fuzzy control system. This combination, in com-

parison with the existing fixed-adaptive methods

[31, 32, 77–80], addresses the uncertainty related issues

and enables us to provide qualitative elasticity rules as

well.

Cluster Computing (2020) 23:3095–3117 3113

123

7 Conclusion

This paper investigates the horizontal elasticity problem

from the SPs perspective and proposes biologically-in-

spired auto-scaling solutions. The proposed elastic methods

follow a Reactive triggering approach, target Web appli-

cations, and aim to maintain the desired performance level

whilst reducing operational cost. The proposed methods are

implemented using a Control theoretical feedback tech-

nique and a Fuzzy control system. The proposed approach

integrates a functional model of basal ganglia (BG) that

augments the methodology to select the right set of con-

trollers in a natural biologically plausible way thus reduc-

ing the likelihood of oscillation and enhancing the stability

perspective of auto-scaling. We evaluate the proposed

methodology using a large set of different real workload

patterns against some of the existing elasticity methods.

The experimental results demonstrate that the biological

inspired method performs better in both evaluation per-

spective (i.e. performance and cost) than all other approa-

ches. Moreover, the Soft switching method reduces the

bumpy transitions and oscillatory behaviour observed using

the proposed Hard switching approach, thus having the

potential to increase the stability of underlying system. In

future, we aim to extend the developed framework in the

following ways: (1) a detailed theoretical convergence and

stability analysis is required to formally evaluate the pro-

posed approach against other state-of-the-art approaches,

(2) enhancement of switching rules to learn at runtime and

(3) to explore the possibility of enhancing the framework

by incorporating the vertical elasticity as well.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Almeida, V., Arlitt, M., Rolia, J.: Analyzing a web-based sys-

tem’s performance measures at multiple time scales. SIG-

METRICS Perform. Eval. Rev. 30(2), 3–9 (2002)

2. Arlitt, M., Jin, T.: A workload characterization study of the 1998

world cup web site. IEEE Netw. 14(3), 30–37 (2000)

3. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud

computing: what it is, and what it is not. In: 10th International

Conference on Autonomic Computing, pp. 23–27 (2013)

4. Amazon: Amazon auto scaling (2015)

5. Rightscale: Set up autoscaling using alert escalations (2015)

6. Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource

scaling for cloud applications. In: 2012 12th IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing

(CCGrid), pp. 644–651. IEEE (2012)

7. Koperek, P., Funika, W.: Dynamic business metrics-driven

resource provisioning in cloud environments. In: Parallel Pro-

cessing and Applied Mathematics, pp. 171–180 (2012)

8. Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gudreddi,

S.L.D.: Integrated and autonomic cloud resource scaling. In:

Proceedings of the 2012 IEEE Network Operations and Man-

agement Symposium, NOMS 2012, pp. 1327–1334 (2012)

9. Lim, H.C., Babu, S., Chase, J.S., Parekh, S.S.: Automated control

in cloud computing: challenges and opportunities. In: Proceed-

ings of the 1st Workshop on Automated Control for Datacenters

and Clouds, pp. 13–18. ACM (2009)

10. Arman, A., Al-Shishtawy, A., Vlassov, V.: Elasticity controller

for Cloud-based key-value stores. In: Proceedings of the Inter-

national Conference on Parallel and Distributed Systems—

ICPADS, pp. 268–275 (2012)

11. Gergin, I., Simmons, B., Litoiu, M.: A decentralized autonomic

architecture for performance control in the cloud. In Proceed-

ings—2014 IEEE International Conference on Cloud Engineer-

ing, IC2E 2014, pp. 574–579 (2014)

12. Ashraf, A., Byholm, B., Porres, I.: CRAMP: cost-efficient

resource allocation for multiple web applications with proactive

scaling. In: CloudCom 2012—Proceedings: 2012 4th IEEE

International Conference on Cloud Computing Technology and

Science, pp. 581–586 (2012)

13. Ullah, A., Li, J., Shen, Y., Hussain, A.: A control theoretical view

of cloud elasticity: taxonomy, survey and challenges. Clust.

Comput. 21(4), 1735–1764 (2018)

14. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provi-

sioning for cloud-based software. In Proceedings of the 9th

International Symposium on Software Engineering for Adaptive

and Self-managing Systems, pp. 95–104. ACM (2014)

15. Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A.,

Estrada, G.: Fuzzy self-learning controllers for elasticity man-

agement in dynamic cloud architectures. In: Proceedings—2016

12th International ACM SIGSOFT Conference on Quality of

Software Architectures, QoSA 2016, pp. 70–79 (2016)

16. Zhang, Q., Zhani, M.F., Zhang, S., Zhu, Q., Boutaba, R.,

Hellerstein, J.L.: Dynamic energy-aware capacity provisioning

for cloud computing environments. In: Proceedings of the 9th

International Conference on Autonomic Computing, pp. 145–154

(2012)

17. Zhang, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Dynamic

heterogeneity-aware resource provisioning in the cloud. IEEE

Transa. Cloud Comput. 2(1), 14–28 (2015)

18. Ghanbari, H., Simmons, B., Litoiu, M., Barna, C., Iszlai, G.:

Optimal autoscaling in a IaaS cloud. In: Proceedings of the 9th

International Conference on Autonomic Computing—ICAC ’12

2(i), 173 (2012)

19. Liu, J., Zhang, Y., Zhou, Y., Zhang, D., Liu, H.: Aggressive

resource provisioning for ensuring QoS in virtualized environ-

ments. IEEE Trans. Cloud Comput. 02(03), 119–131 (2014)

20. Cheng-Zhong, X., Rao, J., Xiangping, B.: URL: a unified rein-

forcement learning approach for autonomic cloud management.

J. Parallel Distrib. Comput. 72(2), 95–105 (2012)

21. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid

elasticity controller for cloud infrastructures. In: Network Oper-

ations and Management Symposium (NOMS), 2012 IEEE,

pp. 204–212. IEEE (2012)

22. Ranjan, R., Wang, L., Zomaya, A.Y., Georgakopoulos, D., Sun,

X.-H., Wang, G.: Recent advances in autonomic provisioning of

3114 Cluster Computing (2020) 23:3095–3117

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

big data applications on clouds. IEEE Trans. Cloud Comput. 3(2),
101–104 (2015)

23. Singh, S., Chana, I.: QoS-aware autonomic resource management

in cloud computing: a systematic review. ACM Comput. Surv.

(CSUR) 48(3), 42 (2015)

24. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool

management: Reactive versus proactive or let’s be friends.

Comput. Netw. 53(17), 2905–2922 (2009)

25. Gambi, A., Toffetti, G., Pezze, M.: Assurance of self-adaptive

controllers for the cloud. In: Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 7740 LNCS, pp. 311–339

(2013)

26. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of

auto-scaling techniques for elastic applications in cloud envi-

ronments. J. Grid Comput. 12(4), 559–592 (2014)

27. Jamshidi, P., Pahl, C., Mendonça, N.C.: Managing uncertainty in

autonomic cloud elasticity controllers. IEEE Cloud Comput. 3(3),
50–60 (2016)

28. Farokhi, S., Jamshidi, P., Brandic, I., Elmroth, E.: Self-adaptation

challenges for cloud-based applications: a control theoretic per-

spective. In: 10th International Workshop on Feedback Com-

puting, Seattle (2015)

29. Hussain, A., Abdullah, R., Yang, E., Gurney, K.: An intelligent

multiple-controller framework for the integrated control of

autonomous vehicles. In: Advances in Brain Inspired Cognitive

Systems, pp. 92–101. Springer (2012)

30. Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Ger-

ostathopoulos, I., Hempel, A.B., Hoffmann, H., Jamshidi, P.,

Kalyvianaki, E., Klein, C., Krikava, F., Misailovic, S., Papado-

poulos, A.V., Ray, S., Sharifloo, A.M., Shevtsov, S., Ujma, M.,

Vogel, T.: Software engineering meets control theory. In: Pro-

ceedings—10th International Symposium on Software Engi-

neering for Adaptive and Self-Managing Systems, SEAMS 2015,

pp. 71–82 (2015)

31. Patikirikorala, T., Colman, A., Han, J.: 4M-Switch: multi-mode-

multi-model supervisory control framework for performance

differentiation in virtual machine environments. In: 2014 10th

International Conference on Network and Service Management

(CNSM), pp. 145–153. IEEE (2014)

32. Grimaldi, D., Persico, V., Pescapé, A., Salvi, A., Santini, S.: A

feedback-control approach for resource management in public

clouds. In: Global Communications Conference (GLOBECOM),

2015 IEEE, pp. 1–7. IEEE (2015)

33. Barna, C., Fokaefs, M., Litoiu, M., Shtern, M., Wigglesworth, J.:

Cloud adaptation with control theory in industrial clouds. In:

2016 IEEE International Conference on Cloud Engineering

Workshop (IC2EW), pp. 231–238. IEEE (2016)

34. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F.,

Buyya, R.: CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource pro-

visioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

35. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback

Control of Computing Systems. Wiley, Hoboken (2004)

36. Parekh, S., Gandhi, N., Hellerstein, J., Tilbury, D., Jayram, T.,

Bigus, J.: Using control theory to achieve service level objectives

in performance management. Real-Time Syst. 23(1–2), 127–141
(2002)

37. Lim, H.C, Babu, S., Chase, J.S.: Automated control for elastic

storage. In: Proceedings of the 7th International Conference on

Autonomic Computing, pp. 1–10. ACM (2010)

38. Padala, P., Shin, K.G, Zhu, X., Uysal, M., Wang, Z., Singhal, S.,

Merchant, A., Salem, K.: Adaptive control of virtualized

resources in utility computing environments. In: ACM SIGOPS

Operating Systems Review, vol. 41, pp. 289–302. ACM (2007)

39. Zhu, X., Wang, Z., Singhal, S.: Utility-driven workload man-

agement using nested control design. In: American Control

Conference, 2006, p. 6. IEEE (2006)

40. Dawoud, W., Takouna, I., Meinel, C.: Elastic VM for cloud

resources provisioning optimization. In: Communications in

Computer and Information Science, vol. 190 CCIS, pp. 431–445

(2011)

41. Lu, Q., Xu, X., Zhu, L., Bass, L., Li, Z., Sakr, S., Bannerman,

P.L, Liu, A.: Incorporating uncertainty into in-cloud application

deployment decisions for availability. In: 2013 IEEE Sixth

International Conference on Cloud Computing (CLOUD),

pp. 454–461. IEEE (2013)

42. Papadopoulos, A.V.: Design and performance guarantees in cloud

computing: challenges and opportunities. In: 10th International

Workshop on Feedback Computing (2015)

43. Abdullah, R., Hussain, A., Warwick, K., Zayed, A.: Autonomous

intelligent cruise control using a novel multiple-controller

framework incorporating fuzzy-logic-based switching and tuning.

Neurocomputing 71(13), 2727–2741 (2008)

44. Passino, K.M., Yurkovich, S., Reinfrank, M.: Fuzzy Control, vol.

42. Addison-wesley, Menlo Park, CA (1998)

45. Cingolani, P., Alcala-Fdez, J.: jFuzzyLogic: a robust and flexible

fuzzy-Logic inference system language implementation. In:

FUZZ-IEEE, pp. 1–8. Citeseer (2012)

46. Gandhi, A., Harchol-Balter, M., Raghunathan, R., Kozuch, M.A.:

Autoscale: dynamic, robust capacity management for multi-tier

data centers. ACM Trans. Comput. Syst. (TOCS) 30(4), 14

(2012)

47. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet

application deadlines in cloud workflows. In: 2011 International

Conference for High Performance Computing, Networking,

Storage and Analysis (SC), pp. 1–12. IEEE (2011)

48. Wikibench: Wikipedia access traces (2009)

49. Internet Traffic Archive. Worldcup 1998 Web trace (2015)

50. WAND: WITS: Waikato Internet Traffic Storage (2017)

51. Ashraf, A., Byholm, B., Lehtinen, J., Porres, I.: Feedback control

algorithms to deploy and scale multiple web applications per

virtual machine. In: 2012 38th EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA),

pp. 431–438 (2012)

52. Amazon: Amazon EC2 pricing (2015)

53. Qin, G., Duan, Z., Wen, G., Yan, Y., Jiang, Z.: An improved anti-

windup bumpless transfer structures design for controllers

switching. Asian J. Control 16(4), 1245–1251 (2014)

54. Lyshevski, S.E.: Control Systems Theory with Engineering

Applications. Springer, New York (2012)

55. Tony Prescott, M.: Action Selection (2008)

56. Redgrave, P., Prescott, T.J., Gurney, K.: The basal ganglia: a

vertebrate solution to the selection problem? Neuroscience 89(4),
1009–1023 (1999)

57. Prescott, T.J., Redgrave, P., Gurney, K.: Layered control archi-

tectures in robots and vertebrates. Adapt. Behav. 7(1), 99–127
(1999)

58. Gurney, K., Prescott, T.J., Redgrave, P.: A computational model

of action selection in the basal ganglia. I. A new functional

anatomy. Biol. Cybern. 84(6), 401–410 (2001)

59. Gurney, K., Prescott, T.J., Redgrave, P.: A computational model

of action selection in the basal ganglia. II. Analysis and simula-

tion of behaviour. Biol. Cybern. 84(6), 411–423 (2001)

60. Yang, E., Hussain, A., Gurney, K.: A basal ganglia inspired soft

switching approach to the motion control of a car-like autono-

mous vehicle. Adv. Brain Inspired Cogn. Syst. 7888, 245–254
(2013)

61. Gurney, K.N.: Reverse engineering the vertebrate brain:

methodological principles for a biologically grounded

Cluster Computing (2020) 23:3095–3117 3115

123

programme of cognitive modelling. Cogn. Comput. 1(1), 29–41
(2009)

62. Girard, B., Tabareau, N., Pham, Q.-C., Berthoz, A., Slotine, J.-J.:

Where neuroscience and dynamic system theory meet autono-

mous robotics: a contracting basal ganglia model for action

selection. Neural Netw. 21(4), 628–641 (2008)

63. Mandali, A., Rengaswamy, M., Srinivasa Chakravarthy, V.,

Moustafa, A.A.: A spiking basal ganglia model of synchrony,

exploration and decision making. Front. Neurosci. 9, 191 (2015)

64. Yang, E., Hussain, A., Gurney, K.: Neurobiologically-inspired

soft switching control of autonomous vehicles. In: Advances in

Brain Inspired Cognitive Systems, pp. 82–91. Springer (2012)

65. Gandhi, A., Dube, P., Karve, A., Kochut, A., Zhang, L.: Adap-

tive, model-driven autoscaling for cloud applications. ICAC 14,
57–64 (2014)

66. Ghanbari, H., Simmons, B., Litoiu, M., Iszlai, G.: Exploring

alternative approaches to implement an elasticity policy. In: 2011

IEEE International Conference on Cloud Computing (CLOUD),

pp. 716–723. IEEE (2011)

67. Patikirikorala, T., Colman, A.: Feedback controllers in the cloud.

In: Proceedings of APSEC (2010)

68. Heo, J., Zhu, X., Padala, P., Wang, Z.: Memory overbooking and

dynamic control of xen virtual machines in consolidated envi-

ronments. In: 2009 IFIP/IEEE International Symposium on

Integrated Network Management, IM 2009, pp. 630–637 (2009)

69. Farokhi, S., Jamshidi, P., Lucanin, D., Brandic, I.: Performance-

based vertical memory elasticity. Proceedings—IEEE Interna-

tional Conference on Autonomic Computing, ICAC 2015,

pp. 151–152 (2015)

70. Padala, P., Hou, K.-Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z.,

Singhal, S., Merchant, A.: Automated control of multiple virtu-

alized resources. In: EuroSys’09, pp. 13–26 (2009)

71. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and

self-configured cpu resource provisioning for virtualized servers

using kalman filters. In: Proceedings of the 6th International

Conference on Autonomic Computing, pp. 117–126. ACM

(2009)

72. Zhu, Q., Agrawal, G.: Resource provisioning with budget con-

straints for adaptive applications in cloud environments. IEEE

Trans. Serv. Comput. 5(4), 497–511 (2012)

73. Al-Shishtawy, A., Vlassov, V.: ElastMan: elasticity manager for

elastic key-value stores in the cloud. In: Cloud and Autonomic

Computing Conference (CAC’13), p. 1 (2013)

74. Wang, Z., Liu, X., Zhang, A., Stewart, C., Zhu, X., Kelly, T.,

Singhal, S., et al.: AutoParam: automated control of application-

level performance in virtualized server environments. In: Pro-

ceedings of the 2nd IEEE International Workshop on Feedback

Control Implementation in Computing Systems and Networks

(FeBid). Citeseer (2007)

75. Wang, Z., Chen, Y., Gmach, D., Singhal, S., Watson, B.J., Riv-

era, W., Zhu, X., Hyser, C.D.: AppRAISE: application-level

performance management in virtualized server environments.

IEEE Trans. Netw. Serv. Manage. 6, 4 (2009)

76. Kjær, M.A., Kihl, M., Robertsson, A.: Resource allocation and

disturbance rejection in web servers using slas and virtualized

servers. IEEE Trans. Netw. Serv. Manage. 6, 4 (2009)

77. Saikrishna, P.S., Pasumarthy, R., Bhatt, N.P.: Identification and

multivariable gain-scheduling control for cloud computing sys-

tems. IEEE Transactions on Control Systems Technology (2016)

78. Qin, W., Wang, Q.: Modeling and control design for performance

management of web servers via an LPV approach. IEEE Trans.

Control Syst. Technol. 15(2), 259–275 (2007)

79. Tanelli, M., Ardagna, D., Lovera, M.: Identification of LPV state

space models for autonomic web service systems. IEEE Trans.

Control Syst. Technol. 19(1), 93–103 (2011)

80. Saikrishna, P.S., Pasumarthy, R.: Multi-objective switching

controller for cloud computing systems. Control Eng. Pract. 57,
72–83 (2016)

81. Lama, P., Zhou, X.: Autonomic provisioning with self-adaptive

neural fuzzy control for percentile-based delay guarantee. ACM

Trans. Auton. Adapt. Syst. (TAAS) 8(2), 9 (2013)

82. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction

models for adaptive resource provisioning in the cloud. Future

Gener. Comput. Syst. 28(1), 155–162 (2012)

83. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applica-

tions in clouds: a taxonomy and survey. arXiv preprint arXiv:

1609.09224 (2016)

84. Gambi, A., Pezze, M., Toffetti, G.: Kriging-based self-adaptive

cloud controllers. IEEE Trans. Serv. Comput. 9(3), 368–381

(2016)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Amjad Ullah received the M.Sc.

degree in computer science

from Quaid-i-Azam University,

Islamabad Pakistan in 2005,

M.Sc. in Advanced distributed

system degree from University

of Leicester, UK, in 2011 and

Ph.D. degree in computer sci-

ence from University of Stirling,

Scotland, UK in 2017. His

research interests include

dynamic resource provisioning

in cloud computing, fuzzy logic,

feedback controllers, multi-ob-

jective optimization, search

methods and bio-inspired methods.

Jingpeng Li is presently a

Reader at the Division of Com-

puter Science & Mathematics,

University of Stirling, UK. He is

also the head of CHORDS

(Computational Heuristics,

Operational Research and

Decision Support) Research

Group at Stirling. Dr Li

received the M.Sc. degree in

computational mathematics

from Huazhong University of

Science and Technology, China,

in 1998, and the Ph.D. in oper-

ational research from University

of Leeds, UK, in 2002. His research areas include Intelligent Trans-

port Scheduling and Planning, Metaheuristics, Multi-Objective

Decision Making, Optimization and Search Methodologies, Machine

Learning, Data Mining, Fuzzy Logic, and software engineering. He

has published over 50 technical papers in which more than 20 papers

are in the top international journals (e.g. Evolutionary Computation,

IEEE Trans. on Evolutionary Computation, European Journal of

Operational Research, Transportation Research Part B, Knowledge-

Based systems, etc).

3116 Cluster Computing (2020) 23:3095–3117

123

http://arxiv.org/abs/1609.09224
http://arxiv.org/abs/1609.09224

Amir Hussain is Professor Sci-

ence at the Edinburgh Napier

University in Scotland. He

obtained his B.E. in Electronic

and Electrical Engineering (with

the highest 1st Class Honours,

with distinction) and Ph.D. (in

novel neural network architec-

tures and algorithms for real-

world applications), both from

the University of Strathclyde in

Glasgow, UK, in 1992 and 1997

respectively. Following a

Research Fellowship at the

University of Paisley (nowWest

of Scotland), UK (1996–1998), and a Research Lectureship at the

University of Dundee, UK (1998–2000), and professor at the

University of Stirling in Scotland, UK (2000–2018), he joined the

Edinburgh Napier university, where he is currently a professor. He is

founding Editor-in-Chief of Springers Cognitive Computation journal

and the new BMC/Springer journal of Big Data Analytics. He is

founding Series Editor for the Springer Book Series on Socio-Af-

fective Computing and Spring Briefs on Cognitive Computation. He

also serves on the Editorial Board of a number of other leading

journals including, the IEEE Transactions on Neural Networks and

Learning Systems and the IEEE Computational Intelligence

Magazine. His research interests are cross-disciplinary and industry

focused, aimed at pioneering next-generation brain-inspired multi-

modal Big Data cognitive technology for solving complex real world

problems. He has (co)authored over 300 publications (including over

a dozen Books, over 100 journal papers, and the worlds first research

monographs on the multi-disciplinary areas of: cognitively inspired

audio-visual speech filtering for multi-modal hearing-aids, sentic

computing for natural language processing, and cognitive agent based

computing). He has led more than 50 major multi-disciplinary

research projects, as Principal Investigator, funded by national and

European research councils, local and international charities and

industry. He has supervised more than 30 Ph.D.s to-date, and serves

as an International Advisor to various Governmental Higher Educa-

tion and Research Councils, Universities and Companies. He regu-

larly acts as invited Keynote Speaker, and has organized (as General/

Organizing co-Chair) over 50 leading international Conferences to-

date (including IEEE WCCI, IEEE SSCI, IJCNN, BICS and INNS

Big Data Conference series). He is an invited member of several

IEEE TCs, including the IEEE SMC TC on Cognitive Computing,

and the IEEE CIS Emergent Technologies TC. He is Chapter Chair of

the IEEE UK & RI Industry Applications Society Chapter, and

founding co-Chair of the INNS Big Data Section. He is a Fellow of

the UK Higher Education Academy (HEA), and Senior Fellow of the

Brain Sciences Foundation (USA). More details on his research

profile can be found on his homepage: https://www.napier.ac.uk/peo

ple/amir-hussain.

Cluster Computing (2020) 23:3095–3117 3117

123

https://www.napier.ac.uk/people/amir-hussain
https://www.napier.ac.uk/people/amir-hussain

	Design and evaluation of a biologically-inspired cloud elasticity framework
	Abstract
	Introduction
	Biologically-inspired elasticity framework: hard switching
	Feedback control
	Goal of control methodology
	Control input
	System modelling
	Controller design

	The switching mechanism: a fuzzy control system
	Overview
	The design process

	Experimentation and computational results I
	Workloads
	Benchmark approaches/scenarios
	Fixed gain feedback controller
	RightScale: a rule-based approach

	Evaluation criteria
	Computational results and analysis

	Biologically-inspired elasticity framework: soft switching
	The BG component
	The modified FIS
	Derivation of final output

	Computational results II
	Performance
	Oscillatory behaviour

	Related work and discussion
	Conclusion
	Open Access
	References

